

I B.TECH I SEMESTER – ELECTRICAL & ELECTRONICS ENGINEERING

S.No	Course	Course Title	Hou	irs per W	'eek	Credit
5.110	Code	Course Thie	L	Т	Р	S
1	20BSBH01	Mathematics-I	2	1	0	3
2	20BSBH03	Applied Physics	3	0	0	3
3	20ES0501	Problem Solving Using 'C'	2	1	0	3
4	20HSBH01	Technical English	3	0	0	3
5	20ES0201	Electrical Circuits	3	0	0	3
6	20BSBH04	Applied Physics lab	0	0	3	1.5
7	20HSBH02	English Language and communication skills lab	0	0	3	1.5
8	20ES0502	Problem Solving Using 'C' lab	0	0	3	1.5
9		Induction Program				
		Total	13	2	9	19.5

I B.TECH II SEMESTER – ELECTRICAL & ELECTRONICS ENGINEERING

S.No	Course Code	Course Title	Hou	rs per W	eek	Credit
5.110	Course Coue	Course Title	L	Т	Р	S
1	20BSBH02	Mathematics-II	2	1	0	3
2	20BSBH07	Applied Chemistry	3	0	0	3
3	20ES0301	Engineering Graphics & Design	1	0	4	3
4	20ES0204	Network Analysis	3	0	0	3
5	20ES0503	Python Programming	3	0	0	3
6	20BSBH08	Applied Chemistry lab	0	0	3	1.5
7	20ES0504	Python Lab	0	0	3	1.5
8	20ES0302	Engineering Workshop & IT Practice	0	0	3	1.5
9	20MCBH01	Environmental Science (Mandatory Course)	0	0	0	0
		Total	12	1	13	19.5

SEMESTER – III COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.No	Course Code	Course Title	С	L	Т	Р	Credits
1	20BSBH12	Mathematics-III	BS	2	1	0	3
2	20PC0205	DC Machines & Transformers	С	3	0	0	3
3	20PC0401	Electronic Devices & Circuits	С	3	0	0	3
4	20PC0206	Electromagnetic Fields	С	3	0	0	3
5	20HSMB01	Economics for Engineers	HS	3	0	0	3
6	20PC0207	Network Theory Laboratory	V Lab	0	0	3	1.5
7	20PC0404	Electronic Devices & Circuit Laboratory	C Lab	0	0	3	1.5
8	20PC0208	DC Machines & Transformers Lab	C Lab	0	0	2	1.5
9	20SO0201	Circuits Simulation & Analysis using PSPICE & MATLAB	SOC	1	0	2	2
		Total					21.5
10	20MCBH02	Constitution of India	М	0	0	0	0

SEMESTER – IV COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.No.	Course Code	Course Title	С	L	Т	Р	Credits
1	20BSBH1 3	Mathematics-IV	BS	3	0	0	3
2	20ES0505	Data Structures and Algorithms with Python	ES	3	0	0	3
3	20PC0209	Power Systems-I	С	3	0	0	3
4	20PC0403	Digital Electronics	С	3	0	0	3
5	20PC0210	AC Machines	С	3	0	0	3
6	20PC0211	AC Machines lab	C Lab	0	0	3	1.5
7	20PC0212	Electrical Circuits & Simulation Lab	C Lab	0	0	3	1.5
8	20ES0506	Data Structures with Python lab	ES Lab	0	0	3	1.5
9	20SO0202	PLC Design	S	1	0	2	2

	Total					21.5
20IN0201	Internship (Mandatory) for 6 we	eks durat	ion duri	ng sur	nmer	vacation

SEMESTER – V COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course Code	Course Title					
No.			C	L	Т	Р	Credits
1	20PC0213	Power Systems II	PC	3	-	-	3
2	20PC0214	Power Electronics	PC	3	-	-	3
3	20PC0215	Control Systems	PC	3	-	-	3
	20PE0201	Power Quality					
	20PE0202	Electrical Distribution					
4	201120202	Systems/MOOC	PE/JOE-I	3	-	-	3
	20PE0203	Programmable Logic					5
	Controllers						
	20PC0403	Signals and Systems					
5	XXXXXX	Open Elective - I	OE/JOE-I	3	-	-	3
6	20PC0216	Control Systems and		-	-	3	
0	20FC0210	simulation Lab	PC LAB				1.5
7	20PC0217	Power Electronics and		-	-	3	
	20PC0217	simulation Lab	PC LAB				1.5
8	20SO0203	Soft Skills	SSC LAB	-	-	3	2
9	2013/0201	Intomobin	INTERSHI	-	-	-	
9	20IN0201	Internship	Р				1.5
		Total		15	0	9	21.5

CATEGORY	
PC	12
OE	3
PE	3
INTERSHIP	1.5
SSC	2
TOTAL CREDITS	21.5

SEMESTER – VI COURSE / BRANCH: B. TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course Code	Course Title							
No.			С	L	Т	Р	Credits		
1	20PC0218	Electrical Measurements and	РС	3			3		
	201 C0218	Instrumentation	IC	10	IC	5	-	-	
2	20PC0219	Power System Analysis	PC	3	-	-	3		
3	20PC0414	Micro Processors and Micro	PC	3	_		3		
5	201 00414	Controllers	IC	5	_	_	5		
	20PE0204	Modern Control Theory							
	20PE0205	Industrial Automation and							
	201 £0205	Control		2			2		
4	20PE0206	Power Electronics and	PE-II	3	-	-	3		
		Distributed Generation							
	20PE0207	Power System Operation and Control							
			OE/JOE-	2					
5	XXXXXX	Open Elective – II	II	3	-	-	3		
6	20PC0220	Electrical Measurements and	PC LAB	_	_	3	1.5		
	201 00220	Instrumentation Laboratory				5	1.5		
7	20PC0221	Computer Aided Design	PC LAB	_	_	3	1.5		
,	201 00221	Laboratory				5	1.5		
8	20PC0416	Micro Processors and Micro	PC LAB	_	_	3	1.5		
0	201 00410	Controllers Lab	I C LAD	_		5	1.5		
9	20SO0204	Skill Oriented Lab	SSC			4	2		
			LAB	-		+	۷		
10	XXXXXX	Social Ethics		1	-	-	0		
		Total		16	0	13	21.5		

CATEGORY	
PC	13.5
OE	3
PE	3
SOC	2
TOTAL CREDITS	21.5

SEMESTER – VII COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title		L	Т	P	Credits
No.	Code		С				
	20PE0208	Utilization of Electrical					
	201 E0208	Energy				l	
1	20PE0209	Power Systems Stability	PE-III	3	-	-	3
	20PE0210	High Voltage Engineering					
	20PE0211	Power System Transients					
	20PE0212	Electrical Drives					
	20PE0213	HVDC Transmission					
2	20PE0214	Flexible Alternating Current Transmission Systems	PE-IV	3	-	-	3
	20PE0215	Advanced Power System Protection					
	20PE0216	Smart Grid Technology/					
		MOOC(Smart Grid- Basics					
		to advanced technologies)					
3	200000217	Energy Audit and	PE-V	3	-	-	3
	20PE0217	Management					
	20PE0218	Digital Image Processing					
	20PE0219	Electric and Hybrid Vehicles					
4	XXXXXX	Open Elective – III/Software	OE- III	3	_	_	3
T		Engineering	OL III	5			5
5	XXXXXX	Open Elective –	OE-IV	3	-	-	3
		IV/Introduction to Micro					
		Electro Mechanical Systems					
(20MC0201	MOOC/Advanced Linear	MOOC	2			2
6	20141C0201	Continuous Control Systems		3	-	-	3
8	20SO0205	Skill Oriented Lab	SSC LAB	-	-	4	2
9	20CV0201	Comprehension Vivo Voce	CVV	-	-	-	1
		Total		15	0	10	21

CATEGORY	
PE	12

OE	6
CVV	1
SOC	2
TOTAL	21
CREDITS	21

SEMESTER – VIII

COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title					
No.	Code		С	\mathbf{L}	Т	Р	Credits
1	20PR0201	PROJECT	PRO	07	-	07	14

OPEN ELECTIVE-I

S. No.	Course Code	Course Title	
1	20OE0301	Introduction to Operation Management	
2	20OE0302	Product Design	
3	200E0303	Energy Management	
4	20OE0401	Digital Electronics and Microprocessor	
5	20OE0402	Introduction to Communication Systems	
6	20OE0403	Embedded Systems and its Applications	
7	20OE0501	OOPS Using Java	
8	20OE0502	Computer Organization	
9	20OE0503	Design and Analysis of Algorithms	

OPEN ELECTIVE-II

S. No.	Course Code	Course Title	
1	20OE0304	Introduction to Vehicle Technology	
2	20OE0305	Smart Materials	
3	20OE0306	Optimization Techniques	
4	200E0404	Introduction to Networking	
5	20OE0405	VLSI Design and its Applications	
6	20OE0406	Introduction to IOT	
7	20OE0504	Computer Networks	
8	20OE0505	Object Oriented Analysis and Design	
9	20OE0506	Database Management Systems	

OPEN ELECTIVE-III

S. No.	Course Code	Course Title	
1	20OE0307	Robotics	
2	20OE0308	Nano Technology	
3	20OE0309	Green Energy Systems	
4	20OE0407	Industrial Nano Technology	
5	20OE0408	Image Processing	
6	20OE0409	Bio Medical Electronics	
7	20OE0507	Operating System	
8	20OE0508	Software Engineering	
9	20OE0509	Human Computer Interaction	

OPEN ELECTIVE-IV

S. No.	Course Code	Course Title	
1	20OE0310	3D Printing Technology	
2	20OE0311	Total Quality Management	
3	20OE0312	Non-Destructive Testing	
4	20OE0410	Digital Audio Engineering	
5	20OE0411	Space Time Wireless Communications	
6	20OE0412	Introduction to MEMS	
7	20OE0510	Ethical Hacking	
8	20OE0511	Machine Learning	
9	20OE0512	Distributed Databases	

OPEN ELECTIVES OFFERED BY DEPARTMENT TO OTHER BRANCH STUDENTS OPEN ELECTIVE-I

S. No.	Course Code	Course Title
1 20OE0201 Renewable Energy Sources		Renewable Energy Sources
2	20OE0202	Introduction to Power Electronics
3 200E0203 E1		Electrical Power Generation

OPEN ELECTIVE-II

S. No.	Course Code	Course Title
1 20OE0204 Introductio		Introduction to High Voltage Engineering
2	20OE0205	Electrical Power Quality
3 200E0206 Electrical Trans		Electrical Transmission System

OPEN ELECTIVE-III

S. No. Course Code	Course Title
--------------------	--------------

1	20OE0207	Introduction to Electrical Drives
2	20OE0208	Distribution Systems
3	20OE0209	Utilization and Traction Systems

OPEN ELECTIVE-IV

S. No.	Course Code	Course Title
1	20OE0210	Introduction to Power System Protection
2	20OE0211	Power System Analysis and Operation
3	20OE0212	Circuits and Synthesis

CREDIT DISTRIBUTION

S. No	Course	Hours	Cr edi ts
1	Theory Course (Core/Foundation/Elective)	3	3
2	Professional Core Courses	3	3
3	Professional Elective Courses	3	3
4	Open Elective Courses	3	3
5	Engineering Science courses (Engineering Graphics/Engineering Drawing)	1L+4P	3
6	Engineering Science courses	3	3
7	Laboratory Courses	3	1.5
8	Virtual Laboratory Courses	3	1.5
9	MOOC Courses	0	2
10	Skill Oriented Course / Certification Course	1L+2P	2
11	Skill Advanced Course / Certification Course	1L+2P	2
12	Soft Skill Course / Certification Course	1L+2P	2
13	Summer Internship (8 Weeks)	0	1.5
14	Comprehensive Viva Voce	0	1
15	Project Work, Seminar and Full Semester0Internship in Industry (6 Months)0		14
16	16 Mandatory Courses		0
17	17 Minor / Honors Degree Courses		4

S. No	Cate	Subject Area and % of Credits	Average No. of Credits
1	goryHumanities and Social Sciences(HS), including Management.	HS (05% to 10%)	10
2	Basic Sciences (BS) including Mathematics, Physics and Chemistry.	BS (10% to 15%)	21
3	Engineering Sciences (ES), including Workshop, Drawing, Basics of Electrical / Electronics / Mechanical / Computer	ES (10% to 15%)	24
4	Engineering. Professional Subjects - Core (PC), relevant to the chosen specialization/branch.	PC (30% to 40%)	51
5	Professional Subjects - Electives (PE), relevant to the chosen specialization/branch.	PE (5% to 10%)	15
6	Open Electives Subjects / MOOCs - Electives (OE), from other technical and/or emerging subject areas.	OE (5% to 10%)	12
7	Project Work, Full Semester Internship and Summer Internships	5% to 10%	17
8	Skill Oriented Courses/Certificate Course	SO (2% to 3%)	04
9	Skill Advanced Courses / Certificate Course	SA (3% to 4%)	06
10	Mandatory Courses(Induction Program, NCC/NSS, Constitution of	MC (0%)	0

CATEGORY WISE DISTRIBUTION OF CREDITS

	India,		
	Environmental Science, Social		
	Values and Professional Ethics)		
	160		

OURSE COMPONENTS – SEMESTER WISE FOR FOUR YEAR REGULAR PROGRAMME

Year/Sem	No. of Theory Courses	No. of Lab Courses	Total Credit s
B.Tech I Semester	2 Basic Science + 1 Humanities and Social Science + 2 Engineering Science	1 Humanities and Social Science Lab + 1 Basic Science Lab + 1 Engineering Science Lab + Induction Training (MC) + NCC / NSS (MC)	19. 5
B.Tech II Semester	2 Basic Science + 3 Engineering Science	2 Engineering Science Lab + 1 Basic Science Lab + Environmental Science(MC)	19. 5
B.Tech III Semester	1 Basic Science + 4 Professional Core	2 Professional Core Lab + 1 Professional Core Virtual Lab + Skill Oriented Course + Constitution of India (MC)	21. 5
B.Tech IV Semester	3 Professional Core + 1 Engineering Science / Professional Core(Interdisciplina ry) + Humanities and Social Science	Engineering Science / Professional Core(Interdisciplinary) Lab + 2 Professional Core Lab + Skill Oriented Course	21. 5
B.Tech V Semester	3 Professional Core + Open Elective/ Job Oriented Elective -I + Professional Elective – I	2 Professional Core Lab + 1 Skill Advanced Course / Soft Skill Course + Summer Internship 2 Months after Second Year (To be Evaluated during V Semester)	21. 5
B.Tech VI	3 Professional Core + Professional Elective - II + Open Elective/ Job	2 Professional Core Lab + 1 Professional Core Virtual Lab + 1 Skill Advanced	21. 5

Semester B.Tech VII Semester	Oriented Elective – II 3 Professional Elective- III,IV,V + Open Elective/ Job Oriented	Course / Soft Skill Course + Social Values and Professional Ethics(MC) 2 Professional Core Lab + 1 Skill Advanced Course / Soft Skill Course +	21
D Tech VIII	Elective –III, IV	Comprehensive Viva Voce	1.4
B.Tech VIII Semester	Project work, Se	eminar and Internship (6 Months)	14
Total	5 Basic Science + 2 Humanities and Social Sciences + 5 Engineering Science + 13 Professional Core + 1 Professional Core(Interdisciplinary) + 5 Professional Electives + 4 Open Electives + 4 Open Electives + Project Work , Seminar and Internship (6 Months)	1 Humanities and Social Sciences Lab + 2 Basic Science Lab + 3 Engineering Science Lab + 1 Engineering Science / Professional Core (Interdisciplinary) Lab + 10 Professional Core Lab + 2 Professional Core Virtual Lab + 2 Skill Oriented Course + 3 Skill Advanced Course / Soft Skill Course + Summer Internship + Comprehensive Viva Voce + Induction Training (MC) + Constitution of India (MC) + Environmental Science(MC) + Social Values and Professional Ethics(MC) + NCC/NSS (MC)	160

COURSE WISE BREAK-UP FOR REGULAR PROGRAM:

Total Theory Courses - 35 (5 Basic Science + 2 Humanities and Social Sciences + 5 Engineering Science + 13 Professional Core + 1 Professional Core(Interdisciplinary) + 5 Professional Electives + 4 Open Electives / Job Oriented Electives)	35 @ 3credits each	105
Laboratory Courses –19 (2 Basic Science Lab + 1 Humanities and Social Sceines Lab + 3 Engineering Science Lab + 1 Engineering Science / Professional Core(Interdisciplinary) Lab + 10 Professional Core Lab + 2 Professional Core Virtual Lab)	19 @ 1.5 credits each	28.5
Summer Internship	1 @ 1.5 credit	1.5
Comprehensive Viva Voce	1 @ 1 credit	01
Skill Oriented Courses / Certification Courses - 2	2 @ 2credits each	04
Skill Advanced Courses / Soft Skill Courses / Certification Courses - 3	3 @ 2 credit	06
Project Work, Seminar and Full Semester Internship in Industry (6 Months)	1 @ 14 credits	14
Mandatory Course	5 @ 0 credits	0
Total Credits		160

(20BSBH01)MATHEMATICS - I

(Common to all branches)

I B.Tech. I Sem

Course Objectives:

L	Т	Р	С
2	1	0	3

The course should enable the students to

- Learn the concept of a rank of the matrix and applying this concept to know the consistency and Solving the system of linear equations.
- Identify special properties of matrix and use this information to facilitate the calculation of matrix characteristics
- Find maxima and minima of function of two and three variables.
- Learn the Concept of multiple integrals and applications
- Expand the various functions as Fourier series

UNIT-I: Matrices

Matrices: Types of Matrices- Rank of a matrix by Echelon form and Normal form- System of linear equations: Gauss elimination method- Gauss Seidel Method- Consistency of system of linear equations (Rank method).

UNIT-II: Eigen values and Eigen vectors

Eigen values and Eigen vectors and their properties- Cayley-Hamilton Theorem (without proof)finding inverse by Cayley-Hamilton Theorem- Diagonalization of a matrix- calculation of powers of matrix - Quadratic forms: Reduction of Quadratic form to canonical form and their nature .

UNIT-III: Differential Calculus and its applications

Rolle's theorem- Lagrange's Mean value theorem- simple examples of Taylor's and Maclaurin's series –Functions of several variables- Jacobian–maxima and minima functions of two variables - Lagrange's method of multipliers with three variables.

UNIT-IV: Multiple integrals

Double integrals - Cartesian & Polar form, Change of variables, Change of order of integration, Triple integrals-Change of variables. Applications: Areas (by double integrals) and Volumes (by double and triple integrals).

UNIT-V: Fourier Series

Fourier Series: Determination of Fourier coefficients – Fourier series – Even and odd functions – Fourier series in an arbitrary interval – Even and odd periodic continuation – Half-range Fourier sine and cosine expansions.

Course Outcomes:

On suc	cessful completion of the course, students will be able to	POs related to COs
CO1	Write the matrix representation of a set of linear equations and to analyses the solution of the System of equations	PO1,PO2,PO3
CO2	Develop the use of matrix algebra techniques that is needed by engineers for practical applications	PO1,PO2
CO3	Utilize mean value theorems to real life problems	PO1,PO2
CO4	Acquire the knowledge of multiple integrals in various coordinate systems.	PO1,PO2
CO5	Gain knowledge to tackle engineering problems using the concepts of fourier series	PO1,PO2,PO3

TEXTBOOKS:

- 1. Higher Engineering Mathematics, by B.S.Grewal, 44/e, Khanna Publishers, 2017.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, 10/e, John Wiley & Sons, 2011

REFERENCES:

- 1. A text book of Engineering Mathematics by N.P.Bali and Manish Goyal, Laxmi Publications, Reprint, 2008.
- 2. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 3. Engineering mathematics, volume-I&II, E.Rukmangadachari & E.Keshava Reddy Pearson Publishers.
- 4. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-		-	-	-	-
CO2	3	3	-	-	-	-	-	-		-	-	-
CO3	3	3	-	-	-	-	-	-		-	-	-
CO4	3	3	-	-	-	-	-	-		-	-	-
CO5	3	3	3	-	-	-	-	-		_	_	_
Average	3	3	3	-	I	-	I	-		-	-	-

CO-PO Mapping

(20BSBH03)APPLIED PHYSICS

(Common to EEE,ECE and CSE)

L	Т	Р	С
3	0	0	3

Course Objectives

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications.
- To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- To enlighten the concepts of Quantum Mechanics and to provide fundamentals of de'Broglie waves, quantum mechanical wave equation and its applications, the importance of free electron theory and band theory of solids.
- Evolution of band theory to distinguish materials, basic concepts and transport phenomenon of charge carriers in semiconductors. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

<mark>Unit-I:</mark> Wave Optics

Interference- Principle of superposition – Interference of light – Conditions for sustained interference--Interference in thin films (Reflection Geometry) –Newton's Rings – Determination of wavelength and refractive index.
 Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.
 Polarization- Introduction – Types of polarization – Polarization by reflection, refraction And double refraction - Nicol's Prism - Half wave and Quarter wave plates with applications.

Unit-II: Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd:YAG laser – He-Ne laser – Semiconductor LASER – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Bloch diagram of optical fibre communication system– Propagation Losses (qualitative) – Applications.

Unit-III:

Dielectric and Magnetic Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and Permeability – Origin of permanent magnetic moment – Classification of magnetic materials -- Domain theory of ferromagnetism– Hysteresis – Soft and Hard magnetic materials.

<mark>Unit IV:</mark>

Quantum Mechanics and Band theory of Solids

Quantum Mechanics- Dual nature of matter – Schrodinger's time independent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well.

Band theory of Solids- Classical free electron theory (Merits and demerits only) – Quantum free electron theory (Merits and demerits only) – Fermi- Dirac distribution – Density of states – Fermi energy.

Bloch's Theorem (Qualitative) – Kronig-Penney model (Qualitative) – E vs K diagram – Classification of crystalline solids –Concept of hole.

Unit – V:

Semiconductors and Superconductors

Semiconductors- Introduction – Intrinsic semiconductors – Density of charge carriers(Qualitative) – Electrical conductivity – Fermi level – Extrinsic semiconductors – Density of charge carriers(Qualitative) – Dependence of Fermi energy on carrier concentration and temperature – Drift and diffusion currents – Einstein's equation – Direct and indirect band gap semiconductors – Hall effect– Applications of semiconductors.

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) – High T_c superconductors – Applications of superconductors.

On suc	POs related to COs			
CO1	CO1 Study the different realms of physics and their applications in both scientific and technological systems through physical optics.			
CO2				
CO3	CO3 Asses the electromagnetic wave propagation and its power in different media			
CO4	Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields.	PO1,PO2		
CO5	Study the quantum mechanical picture of subatomic world along with the discrepancies between the classical estimates and laboratory observations of electron transportation phenomena by free electron theory and band theory.	PO1		

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning.

Reference Books:

- 1. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 4. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3		-	-	-		-	-	-	-	-
CO3	2	2	2				-	-		-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-		-	-	-	-
Average	2.6	2.25	2	-	-	-	-		-	-	-	-

(20ES0501) PROBLEM SOLVING USING C (Common to all branches)

I B.Tech. I Sem

L	Т	Р	С
2	1	0	3

Course Objectives:

- To Understand the Hardware of the computer and the General form of a C program.
- To Understand the Decision Making and Loop statements of C Language.
- To Understand the Arrays and String concept of C Language.
- To understand the concept of Functions and Pointers in C Language.
- To Understand about Structures, Unions and Files in C Language.

UNIT I - INTRODUCTION TO C PROGRAMMING

Basics of C Programming: Introduction, Computer Languages, Algorithm, Flowchart, Structure of a C program, Concept of a variable, Data types in C, Program statement, Declaration, Storing the data in memory, Tokens, Operators and expressions, Type conversions

Input-Output Library Functions: Unformatted I-O Functions, Single Character Input-Output, String Input-Output, Formatted I-O Functions, printf() Width Specifier, scanf() Width Specifier UNIT-II- CONTROL STATEMENTS

Conditional Control Statements, if. if-else ,nested if-else .else-if ladder ,Multiple Branching Control Statement ,switch-case ,Loop Control Statements, while ,do-while, for ,Nested Loops, Jump Control statements ,break ,continue ,goto,exit ,return

Function: Function and its uses, Function Prototype, Defining a function, Calling a function, Returnstatement, Types of functions,Recursion,Nested functions, main() function, LibraryFunction, Local and global variables

UNIT-III ARRAYS

Arrays- Definition, One-Dimensional Arrays- Declaration, Initialization, "for" loop for Sequential access, Example Programs. Two-Dimensional Arrays: Declaration, Initialization, Example Programs.

Strings- Introduction, Declaration and Initialization of String Variables, Reading Strings from Terminal, Writing Strings to screen, Arithmetic Operators on Characters, Putting Strings Together, Comparison of Two Strings, String Handling Functions, Table of Strings.

UNIT-IV ADVANCED FEATURES IN C :

Pointers, relationship between arrays and pointers Argument passing using pointers, Array of pointers. Passing arrays as arguments. Strings and C string library.

Structure and Union. Defining C structures, giving values to members, Array of structure, Nestedstructure, passing strings as arguments

UNIT-VFile Management in C-

Introduction, Types of Files, Defining and Opening a File, Closing a File, Input/output Operation on Files, Error handling during I/O Operations, Random Access to Files, Command Line Arguments

Course Outcomes:

On suce	cessful completion of the course, students will be able to	POs related to COs
CO1	Able to describe the Hardware components of a computer.	PO1,PO2
CO2	Able to implement the 'ifelse' statements and 'for', 'while', 'dowhile' loop statements	PO1,PO2,PO3
CO3	Able to write programs using Arrays and Strings concept.	PO1,PO2
CO4	Able to implement Function and Pointer concepts on various applications.	PO1,PO2,PO4
CO5	Able implement File concepts of C Language.	PO1,PO2

Text Books

- 1. Programming In "C" and Data Structures- By Jeri. R. Hanly, Elliot. B. Koffman, Ashok Kamthane, A. AnandaRao, 5th Edition, Pearson Publication. (Units I and II).
- 2. Programming In "C" and Data Structures- By E. Balagurusamy, McGraw Hill Publication

	СО-РО Марріпд											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-		-	-	-	-	-	-
CO2	3	2	3	-	-		-	-	-	-	-	-
CO3	3	3	-	-	-		-	-	-	-	-	-
CO4	3	3	-	3	-		-	-	-	-	-	-
CO5	2	3	-	-	-		-	-	-	-	-	-
Average	2.8	2.8	3	3	-		-	-	-	-	-	-

CO-PO Mapping

(20HSBH01)Technical English

(Common to CE,EEE,MECH&ECE)

L	Т	Р	С
3	0	0	3

Course Objectives:

- To enable the students to communicate in English for academic and social purpose
- Toenablethestudentstoacquirestructuresandwrittenexpressionsrequired for the profession
- To enhance the study skills of the students with emphasison LSRW skills
- Toencourageinvestigatingquestionsofthehumanitiesthrowrhetorical study
- To develop and practice and evaluative reading

UNIT-I

Chapterentitled"MEDIAMATTERS"from<u>MindscapesEnglishforTechnologistsandEnginee</u> <u>rs</u>

L-Techniques- Importance of Phonetics and Correct Pronunciation

S-Meet &Greet and Leave taking, Introducing Oneself and others (Formal and Informal situations)

R-Reading strategies-Skimming and Scanning W

- Writing strategies – Sentence structures

G- PartsofSpeech-Noun-number, Pronoun- Personal Pronoun-Verb-analysis V -

Affixes - Prefix and Suffix - Root words, derivatives

UNIT-II

Chapterentitled"LESSONSFROMTHEPAST"from<u>MindscapesEnglishforTechnologists</u> and <u>Engineers</u>

L-Listeningto details: TypesofListening1. Discriminative listening2. Comprehension listening 3.

Critical listening 4. Appreciative listening

S-Requesting, MakingPoliteConversationsandRolePlay R -

Note Taking and Note Making Strategies

W-ParagraphWritingand GoodqualitiesofParagraph

IB.Tech.ISemSyllabus

G-Tenses–PresentTense, PastTenseandFutureTense V-Homonyms,Homophones, Homographs,SynonymsandAntonyms

UNIT-III

Chapterentitled"TRAVELANDTOURISM"from<u>MindscapesEnglishforTechnologistsand</u> <u>Engineers</u>

L-Listeningto SpeechesofGreat leadersandScientists S -Accepting Invitations, Fixing a Time and AdvisingR -Reading Tables, and Charts W-Conversation, RolePlayandautobiography G-TypesofSentences(Simple,ComplexandCompound) V -Word formations and One –Word Substitutes

UNIT-IV

Chapterentitled"THELOSTLEAF" from American stories by O. Henry

L- ListeningDialoguesandNews S-ExpressingIdeas,OpinionsandTelephoneSkills R -Reading Short Stories W-BiographyandReportingWriting G

-Conditional Clauses and Voices V -

Fixed Expressions and Idioms

UNIT-V

Chapterentitled "SUNITAWILLIAMS" AStarinSpace: PuffinLivesKindleEdition by Aravinda Anatharaman

L-Types of Listening Speeches: Informative, Demonstrative, Persuasive, Entertaining

S-MakingPresentations(MimeandGuess,Monoaction,AutobiographyandBiography) R -

Reading for Entertainment (Humorous short skits)

W-Resume, CV and Coverletter

G-DirectSpeech&IndirectSpeech V -

Phrasal Verbs and Collocations

Course Outcomes:

Onsuc	cessfulcompletionofthecourse, students will be able to	POsrelated to COs		
CO1	Studentcanresponding toavarietyofsituationsandcontexts callingforpurposefulshiftsinthevoice,tonelevelofformality, design, medium andstructure	PO1,PO10		
CO2	Becomeeffectiveintheuseofdifferentmodesofwritten communicationinprofessionalenvironment	PO1,PO10,PO12		
CO3	WelltrainedinLSRWskillsanddevelopcommunicate competence	PO1,PO9		
CO4	Usekeyrhetoricalconceptsthroughanalyzing and composing a variety of text	PO1,PO12		
CO5	Developcompetencetoapplydifferentreadingmethodsto evaluatea massofdataonthe net andto gleanthenecessary information	PO1,PO6		

TextBook:

 $1.\ Mindscapes English for Technologists and Engineers Published by Orient Black Swan$

- 2. Americanstories byO. Henry
- $3. \ A Star \ in Space: Puffin Lives Kindle Edition by Aravinda Anatharaman$

References:

1. A.TextbookofEnglishPhoneticsfor IndianStudentsbyT.Balasubramanian,2012

- 2. CommunicationSkills, SanjayKumar&PushpalathaOxfordUniversityPress
- 3. EveryDayDialoguesinEnglish RobertJ.Dixson,PrenticeHallofIndia

4. RaymondMurphy'sEnglishGrammarwithCD,Murphy,CambridgeUniversityPress,2012

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	2	-	2
CO3	3	-	-	-	-	-	-	-	3	-	-	_
CO4	3	-	-	-	-	-	-	-	-	-	-	3
CO5	3	-	-	-	-	3	-	-	-	-	-	-
Average	3	-	-	-	-	3		-	3	2.5	-	2.5

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org (20ES0201) ELCTRICAL CIRCUITS (COMMON TO ECE& EEE)

L	Т	Р	С
3	0	0	3

I B.Tech . I Sem Syllabus

Course Objectives:

To make the student learn about

- Basic characteristics of R,L,C parameters
- Network reduction techniques, star to delta and delta to star transformations
- The concepts of real power, reactive power, complex power, phase angle and phase difference
- Network theorems and their applications
- How to compute two port network parameters
- Series and parallel resonances, bandwidth

UNIT- I INTRODUCTION TO ELECTRICAL CIRCUITS

Electrical Circuits: Circuit Concept, R, L and C Parameters - Independent and Dependent Voltage and Current Source, Voltage - Current Relationship for Passive Elements- Kirchhoff's Laws, Network Reduction Techniques: Series, Parallel, Series Parallel, Star-to-Delta or Delta-to-Star Transformation.

UNIT- II SINGLE PHASE A.C CIRCUITS

R.M.S, Average Values and Form Factor for Different Periodic Wave Forms – Sinusoidal Alternating Quantities – Phase and Phase Difference – Complex and Polar Forms of Representations, j-Notation, Steady State Analysis of R, L and C (In Series, Parallel Combinations) with Sinusoidal Excitation- Phasor diagrams -Concept of Power Factor- Concept of Reactance, Impedance, Susceptance and Admittance-Apparent Power, Active and Reactive Power, Examples.

UNIT- III NETWORK THEOREMS

Mesh and Nodal analysis. Thevenin's, Norton's, Maximum Power Transfer, Superposition, Reciprocity and Compensation Theorems for D.C And Sinusoidal Excitations.

TWO PORT NETWORKS

Two Port Network Parameters: Impedance, Admittance, Transmission and Hybrid Parameters and their Relations.

UNIT- IV RESONANCE

Introduction, Definition of 'quality factor \mathbf{Q} ' of inductor and capacitor, Series resonance, Bandwidth of the series resonant circuits, Parallel resonance (or anti-resonance), Conditions for maximum impedance, Currents in parallel resonance, Impedance variation with frequency; universal resonance curves, Bandwidth of parallel resonant circuits, General case of parallel resonance circuit.

UNIT- V D.C Transient Analysis: Transient Response of R-L, R-C, R-L-C Series

Circuits for D.C Excitation - Initial Conditions in network - Initial Conditions in Elements.

Magnetic Circuits: Faraday's Laws of Electromagnetic Induction, Concept of Self and Mutual Inductance, Dot Convention, Coefficient of Coupling, Composite Magnetic Circuit-Analysis of Series and Parallel Magnetic Circuits, MMF Calculations.

Course Outcomes:

On s	uccessful completion of the course, students will be able to	POs related to COs
CO1	understanding of Given a network, find the equival impedance by using network reduction techniques	PO1,PO2,PO3,PO5,PO9,PO10,PO12
CO2	The knowledge to about Given a circuit and the excitation, determine the real power, reactive power, power factor etc,	PO2,PO3,PO5,PO9,PO10
CO3	Determine the current through any element and voltage across any element	PO1,PO3,PO5,PO10
CO4	Apply the network theorems suitably	PO3,PO5,PO10,PO12
CO5	Analysis for D.C Excitation - Initial Conditions in network.	PO2,PO3PO5,PO10,PO12

TEXT BOOKS:

- 1. Electrical Circuit Theory and Technology 4th Edition, John Bird, Rovtledge/T&F, 2011.
- 2. Network Analysis 3rd Edition, M.E Van Valkenberg, PHI.

REFERENCES:

- 1. Circuit Theory (Analysis & Synthesis) 6th Edition, A. Chakrabarti, Dhanpat Rai & Sons, 2008.
- 2. Electric Circuits by N.Sreenivasulu, REEM Publications
- 3. Engineering Circuit Analysis, William Hayt and Jack E. Kemmerly, Mc Graw Hill Company, 6th edition.
- 4. Circuits & Networks by A. Sudhakar and Shyammohan S Palli, Tata McGraw-Hill

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2				1	1		2
CO2		2	2		2				2	2		
CO3	2		3		2					2		
CO4			2		1					3		2
CO5		1	2		2					2		2
Average	2.5	1.7	2.2		1.8				1.5	2.2		2

CO-PO Mapping

(20BSBH04)APPLIED PHYSICS LAB (Common to FEE ECE and CSE)

(Common to EEE,ECE and CSE)

L	Т	Р	С
0	0	3	1.5

Course Objectives:

- Understands the concepts of interference, diffraction and their applications.
- Understand the role of optical fiber parameters in communication.
- Recognize the importance of energy gap in the study of conductivity and Hall Effect in a semiconductor.
- Illustrates the magnetic and dielectric materials applications.
- Apply the principles of semiconductors in various electronic devices.

Note: In the following list, out of 15 experiments, any 10 experiments (minimum 8) must be performed in a semester

List of Applied Physics Experiments

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. To determine the resistivity of semiconductor by Four probe method
- 13. To determine the energy gap of a semiconductor
- 14. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.
- 15. Measurement of resistance with varying temperature.

References

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

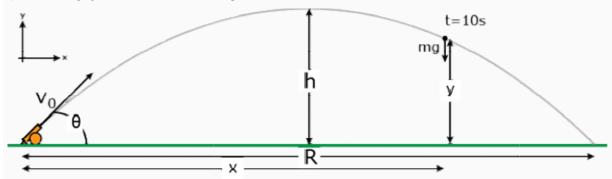
Course Outcomes:

CO1	Recognize the important radius of curvature - Newton's Rings (PO1, PO2) . (PO1, PO2,PO3)
CO2	Acquired the practical application knowledge of optical fiber, resonance – series and parallel LCR circuits (PO1, PO2, PO3)
CO3	Analyze the practical applications of power of prism and wavelength of LASER light using diffraction grating in various engineering feels. (PO1, PO2)
CO4	Understand of practical laser by the study of their relative parameters. (PO1, PO2)
CO5	Recognize power of prism – Spectrometer, material of B-H curve in various engineering tools (PO1,PO2,PO4)
CO6	Follow the ethical principles in implementing the experiments (PO8)
C07	Do experiments effectively as an individual and as a team member in a group. (PO9)
CO8	Communicate verbally and in written form, the understanding about the experiments. (PO10)
CO9	Continue updating their skill related to optical fiber, B-H curve, laser and LCR circuits in implementing experiments in future. (PO12)

CO-PO Mapping

PO CO	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2												
CO2	2	3	3											
CO3	2	3												
CO4	3	2												
CO5	3	2		3										
CO6								3						
C07									2					
CO8										3				
CO9												3		
Average	2.6	2.4	3	3	-	-	-	3	2	3	-	3	2	3

1.	Mathe	matical Problems	[10]
	a.	Calculate the bill for your grocery shopping	
	b.	Find (a+b) ²	
	c.	Calculate the distance travelled by the object.	
	d.	Convert the temperature in centigrade to Fahrenheit	
	e.	Calculate the simple and compound interest calculation	
	f.	Find area of triangle	
	g.	Print '*'	
2.	English	vocabulary (String Operations)	[07]
	a.	Find synonyms	
	b.	Find Antonyms	
	с.	Search word	
	d.	Get abbreviations	
	e.	Find string length, palindrome. Find vowels etc.,	
3.	Physics	Problems	
	A cannor a) What i b) What i	e Motion Example Problem: is fired with muzzle velocity of 150 m/s at an angle of elevation = 45° . Gravity = 9.8 m/s^2 . s the maximum height the projectile reaches? s the total time aloft?	
	,	ar away did the projectile land? (Range) is the projectile at 10 seconds after firing?	
4.		try Problems	
	a.	Boyle's Law	
	b.	Acid-Base Titration Problem	
	c.	Avogadro's Law Equation	
5.	'C' Gra	phics	[07]
	а.	Print Basic Shapes.	
	b.	Text fonts, sizes, direction.	
	с.	Draw smiley face.	
	d.	Design user interface for login.	
	e.	Print Bar Chart / Pie Chart.	
	f.	Print a shape in incremental way.	
6.	File Op	erations	[05]
	а.	Create a file.	
	b.	Read a File.	
	c.	Copy a File.	
	d.	Merge two files.	
	e.	Create a database	
7.	Applica	itions	[01]
	a.	Students Academic Register.	
	b.	Electricity Bill Generation.	
	c.	Employee Pay slips.	


d. Print date, system IP address, Shutdown computer.

3. Support document for physics problems

Throwing or shooting a projectile follows a parabolic course. If you know the initial velocity and angle of elevation of the projectile, you can find its time aloft, maximum height or range. You can also its altitude and distance travelled if given a time. This example problem shows how to do all of these.

Projectile Motion Example Problem:

- A cannon is fired with muzzle velocity of 150 m/s at an angle of elevation = 45° . Gravity = 9.8 m/s^2 .
- a) What is the maximum height the projectile reaches?
- b) What is the total time aloft?
- c) How far away did the projectile land? (Range)
- d) Where is the projectile at 10 seconds after firing?

Let's set up what we know. First, let's define our variables.

 V_0 = initial velocity = muzzle velocity = 150 m/s

- v_x = horizontal velocity component
- $v_v =$ vertical velocity component
- θ = angle of elevation = 45°
- h = maximum height
- R = range
- x = horizontal position at t=10 s
- y = vertical position at t=10 s
- m = mass of projectile
- $g = acceleration due to gravity = 9.8 m/s^2$

Part a) Find h.

The formulas we will be using are:

 $d = v_0 t + \frac{1}{2} a t^2$

and

 $v_{\scriptscriptstyle f} - v_{\scriptscriptstyle 0} = at$

In order to find the distance h, we need to know two things: the velocity at h and the amount of time it takes to get there. The first is easy. The vertical component of the velocity is equal to zero at point h. This is the point where the upward motion is stopped and the projectile begins to fall back to Earth.

The initial vertical velocity is

 $\begin{array}{l} v_{o_y} = v_0 \cdot \sin \theta \\ v_{o_y} = 150 \ \text{m/s} \, \cdot \, \sin(45^\circ) \\ v_{o_y} = 106.1 \ \text{m/s} \end{array}$

Now we know the beginning and final velocity. The next thing we need is the acceleration.

The only force acting on the projectile is the force of gravity. Gravity has a magnitude of g and a direction in the negative y direction.

F = ma = -mg

solve for a

a = -g

Now we have enough information to find the time. We know the initial vertical velocity (V_{vy}) and the final vertical velocity at $h(v_{hy}=0)$

 $\begin{array}{l} v_{\rm hy} - v_{\rm 0y} = at \\ 0 - v_{\rm 0y} = -9.8 \ m/s^2 \cdot t \\ 0 - 106.1 \ m/s = -9.8 \ m/s^2 \cdot t \end{array}$

Solve for t

$$t = \frac{-106.1 \text{ m/s}}{-9.8 \text{ m/s}^2}$$

t = 10.8 s

Now solve the first equation for h

$$\begin{split} & h = v_{0y}t + \frac{1}{2}at^2 \\ & h = (106.1 \text{ m/s})(10.8 \text{ s}) + \frac{1}{2}(-9.8 \text{ m/s}^2)(10.8 \text{ s})^2 \\ & h = 1145.9 \text{ m} - 571.5 \text{ m} \\ & h = 574.4 \text{ m} \end{split}$$

The highest height the projectile reaches is 574.4 meters.

Part b: Find total time aloft.

We've already done most of the work to get this part of the question if you stop to think. The projectile's trip can be broken into two parts: going up and coming down.

 $t_{\scriptscriptstyle total} = t_{\scriptscriptstyle up} + t_{\scriptscriptstyle down}$

The same acceleration force acts on the projectile in both directions. The time down takes the same amount of time it took to go up.

 $t_{up} = t_{down}$

or

 $t_{total} = 2 t_{up}$

we found t_{up} in Part a of the problem: 10.8 seconds

 $t_{total} = 2 (10.8 s)$ $t_{total} = 21.6 s$

The total time aloft for the projectile is 21.6 seconds.

Part c: Find range R

To find the range, we need to know the initial velocity in the x direction.

 $\begin{array}{l} v_{_{0x}} = v_{_{0}} cos\theta \\ v_{_{0x}} = 150 \ m/s \cdot cos(45) \\ v_{_{0x}} = 106.1 \ m/s \end{array}$

To find the range R, use the equation:

 $R = v_{0x}t + \frac{1}{2}at^2$

There is no force acting along the x-axis. This means the acceleration in the x-direction is zero. The equation of motion is reduced to:

$$\begin{split} R &= v_{\scriptscriptstyle 0x} t + \frac{1}{2}(0) t^2 \\ R &= v_{\scriptscriptstyle 0x} t \end{split}$$

The range is the point where the projectile strikes the ground which happens at the time we found in Part b of the problem.

 $\begin{array}{l} R = 106.1 \mbox{ m/s} \cdot 21.6 \mbox{s} \\ R = 2291.8 \mbox{ m} \end{array}$

The projectile landed 2291.8 meters from the canon.

Part d: Find the position at t = 10 seconds.

The position has two components: horizontal and vertical position. The horizontal position, x, is far downrange the projectile is after firing and the vertical component is the current altitude, y, of the projectile.

To find these positions, we will use the same equation:

 $d = v_0 t + \frac{1}{2} a t^2$

First, let's do the horizontal position. There is no acceleration in the horizontal direction so the second half of the equation is zero, just like in Part c.

 $\mathbf{x} = \mathbf{v}_{0x} \mathbf{t}$

We are given t = 10 seconds. V_{0x} was calculated in Part c of the problem.

 $x = 106.1 \text{ m/s} \cdot 10 \text{ s}$ x = 1061 m

Now do the same thing for the vertical position.

 $y = v_{0y}t + \frac{1}{2}at^{2}$

We saw in Part b that $v_{0y} = 109.6$ m/s and a = -g = -9.8 m/s². At t = 10 s:

 $\begin{array}{l} y = 106.1 \mbox{ m/s} \cdot 10 \mbox{ s} + \frac{1}{2}(-9.8 \mbox{ m/s}^2)(10 \mbox{ s})^2 \\ y = 1061 - 490 \mbox{ m} \\ y = 571 \mbox{ m} \end{array}$

At t=10 seconds, the projectile is at (1061 m, 571 m) or 1061 m downrange and at an altitude of 571 meters.

If you need to know the velocity of the projectile at a specific time, you can use the formula

 $v - v_0 = at$

and solve for v. Just remember velocity is a vector and will have both x and y components.

This specific example can be easily adapted for any initial velocity and any angle of elevation. If the cannon is fired on another planet with a different force of gravity, just change the value of g accordingly.

4 Support document for Chemistry problems

1. An <u>acid-base titration is a neutralization reaction</u> performed in the lab to determine an unknown concentration of acid or base. The moles of acid will equal the moles of the base at the equivalence point. So if you know one value, you automatically know the other. Here's how to perform the calculation to find your unknown:

Acid-Base Titration Problem

If you're titrating hydrochloric acid with sodium hydroxide, the equation is:

 $\rm HCl + NaOH \rightarrow NaCl + H_2O$

You can see from the equation there is a 1:1 molar ratio between HCl and NaOH. If you know that titrating 50.00 ml of an HCl solution requires 25.00 ml of 1.00 M NaOH, you can calculate the concentration of hydrochloric acid, HCl. Based on the <u>molar</u> ratio between HCl and NaOH, you know that at the <u>equivalence point</u>:

moles HCl = moles NaOH

Acid-Base Titration Solution

Molarity (M) is moles per liter of solution, so you can rewrite the equation to account for molarity and volume:

 $M_{HCl} x volume_{HCl} = M_{NaOH} x volume_{NaOH}$

Rearrange the equation to isolate the unknown value. In this case, you are looking for the concentration of hydrochloric acid (its molarity):

 $M_{HCl} = M_{NaOH} x volume_{NaOH} / volume_{HCl}$

Now, simply plug in the known values to solve for the unknown:

 M_{HCl} = 25.00 ml x 1.00 M / 50.00 ml

 $M_{HCl} = 0.50 \text{ M HCl}$

2. <u>Avogadro's gas law states</u> the <u>volume</u> of a gas is proportional to the number of moles <u>of gas</u> present when the temperature and pressure are held constant. This example problem demonstrates how to use Avogadro's law to determine the volume of a gas when more gas is added to the system.

Avogadro's Law Equation

Before you can solve any problem regarding Avogadro's gas law, it's important to review the equation for this law. There are a few ways to write this <u>gas law</u>, which is a mathematical relation. It may be stated:

k = V/n

Here, k is a proportionality constant, V is the volume of a gas, and n is the number of moles of a gas. Avogadro's law also means the ideal gas constant is the same value for all gases, so:

 $\begin{array}{l} constant = p_{1}V_{1}/T_{1}n_{1} = P_{2}V_{2}/T_{2}n_{2} \\ V_{1}/n_{1} = V_{2}/n_{2} \\ V_{1}n_{2} = V_{2}n_{1} \end{array}$

where p is pressure of a gas, V is volume, T is temperature, and n is number of moles.

Avogadro's Law Problem

A 6.0 L sample at 25°C and 2.00 atm of pressure contains 0.5 mole of a gas. If an additional 0.25 mole of gas at the same pressure and temperature are added, what is the final total volume of the gas?

Solution

First, express Avogadro's law by its formula:

$$\begin{split} V_i/n_i &= V_f/n_f \\ where \\ V_i &= initial volume \\ n_i &= initial number of moles \\ V_f &= final volume \\ n_f &= final number of moles \end{split}$$

For this example, $V_i = 6.0 \text{ L}$ and $n_i = 0.5 \text{ mole}$. When 0.25 mole is added:

 $\begin{array}{l} n_f = n_i + 0.25 \mbox{ mole} \\ n_f = 0.5 \mbox{ mole} = 0.25 \mbox{ mole} \\ n_f = 0.75 \mbox{ mole} \end{array}$

The only variable remaining is the final volume.

 $V_i/n_i = V_f/n_f$

Solve for $V_{\rm f}$

 $\begin{array}{l} V_{f} = V_{i}n_{f}/n_{i} \\ V_{f} = (6.0 \ L \ x \ 0.75 \ mole)/0.5 \ mole \\ V_{f} = 4.5 \ L/0.5 \ V_{f} = 9 \ L \end{array}$

Check to see if the answer makes sense. You would expect the volume to increase if more gas is added. Is the final volume greater than the initial volume? Yes. Doing this check is useful because it is easy to put the initial number of moles in the numerator and the final number of moles in the denominator. If this had happened, the final volume answer would have been smaller than the initial volume.

Thus, the final volume of the gas is 9.0

Notes Regarding Avogadro's Law

- Unlike <u>Avogadro's number</u>, Avogadro's law was actually proposed by <u>Amedeo Avogadro</u>. In 1811, he hypothesized two samples of an ideal gas with the same volume and at the same pressure and temperature contained the same number of molecules.
- Avogadro's law is also called Avogadro's principle or Avogadro's hypothesis.
- Like the other ideal gas laws, Avogadro's law only approximates the behavior of real gases. Under conditions of high
 temperature or pressure, the law is inaccurate. The relation works best for gases held at low pressure and ordinary
 temperatures. Also, smaller gas particles—helium, hydrogen, and nitrogen—yield better results than larger molecules,
 which are more likely to interact with each other.
- Another mathematical relation used to express Avogadro's law is:

V/n = k

Here, V is the volume, n is the number of moles of the gas, and k is the proportionality constant. It's important to note this means the ideal gas constant is *the same* for all gases.

3. If you trap a sample of air and measure its <u>volume</u> at different <u>pressures</u> (constant <u>temperature</u>), then you can determine a relation between volume and pressure. If you do this experiment, you will find that as the pressure of a gas sample increases, its volume decreases. In other words, the volume of a gas sample at constant temperature is inversely proportional to its pressure. The product of the pressure multiplied by the volume is a constant:

PV = k or V = k/P or P = k/V

where P is pressure, V is volume, k is a constant, and the temperature and quantity of gas are held constant. This relationship is called **Boyle's Law**, after <u>Robert Boyle</u>, who discovered it in 1660.

- Simply put, Boyle's states that for a gas at constant temperature, pressure multiplied by volume is a constant value. The equation for this is PV = k, where k is a constant.
- At a constant temperature, if you increase the pressure of a gas, its volume decreases. If you increase its volume, the pressure decreases.
- The volume of a gas is inversely proportional to its pressure.
- Boyle's law is a form of the Ideal Gas Law. At normal temperatures and pressures, it works well for real gases. However, at high temperature or pressure, it is not a valid approximation.

Worked Example Problem

The sections on the <u>General Properties of Gases</u> and <u>Ideal Gas Law Problems</u> may also be helpful when attempting to work <u>Boyle's</u> <u>Law problems</u>.

Problem

A sample of helium gas at 25° C is compressed from 200 cm³ to 0.240 cm³. Its pressure is now 3.00 cm Hg. What was the original pressure of the helium?

Solution

It's always a good idea to write down the values of all known variables, indicating whether the values are for initial or final states. <u>Boyle's Law</u> problems are essentially special cases of the Ideal Gas Law:

Initial: $P_1 = ?; V_1 = 200 \text{ cm}^3; n_1 = n; T_1 = T$

Final: $P_2 = 3.00 \text{ cm Hg}$; $V_2 = 0.240 \text{ cm}^3$; $n_2 = n$; $T_2 = T$

 $P_1V_1 = nRT (Ideal Gas Law)$

 $P_2V_2 = nRT$

so, $P_1V_1 = P_2V_2$

 $P_1 = P_2 V_2 / V_1$

 $P_1 = 3.00 \text{ cm Hg x } 0.240 \text{ cm}^3/200 \text{ cm}^3$

 $P_1 = 3.60 \text{ x } 10^{-3} \text{ cm Hg}$

Did you notice that the units for the pressure are in cm Hg? You may wish to convert this to a more common unit, such as millimeters of mercury, atmospheres, or pascals.

 $3.60 \ge 10^{-3}$ Hg ≥ 10 mm/1 cm = $3.60 \ge 10^{-2}$ mm Hg

 $3.60 \ge 10^{-3}$ Hg x 1 atm/76.0 cm Hg = $4.74 \ge 10^{-5}$ atm

(20BSBH02) MATHEMATICS-II (Common to all branches)

L T P C 2 1 0 3

I B.Tech II Sem

Course Objectives:

The course should enable the students to

- Solve the Methods of differential equations of first and higher order.
- Learn the basic properties of vector valued functions and their applications to line Surface and volume integrals.
- Know the concept of Laplace transforms and apply to solve the ordinary differential equations

UNIT – 1: First Order O.D.E

Introduction to Ordinary Differential equations- Exact - linear and Bernoulli's equations - Applications to Newton's law of cooling- law of natural growth and decay-Orthogonal trajectories.

UNIT -2: Ordinary Differential Equations of higher order

Homogeneous and Non homogeneous linear differential equations of second and higher order with constant coefficients with RHS terms of type e^{ax} - sin ax- cos ax- polynomials in x- e^{ax} v(x) - xv(x).

UNIT -3: Vector Calculus

Introduction-Vector differentiations-Vector differential operator- Gradient – Divergence-Curl and their properties - Vector integration - Line integral-Potential function – Area - Surface and volume integrals- Vector integrals theorems: Green's theorem - Stoke's and Gauss's Divergence theorem (without proof) – problems.

UNIT– 4 Laplace Transform-I

Laplace transform of standard functions– First shifting Theorem - Second shifting theorem-Transforms of derivatives and integrals – Unit step function –Dirac's delta function- Laplace transform of periodic functions.

UNIT-5 Laplace Transform-II

Convolution theorem- Differentiation and integration of transform – Inverse laplace transform – Application of Laplace transforms to ordinary differential equations of first and second order.

Course Outcomes:

On suc	cessful completion of the course, students will be able to	Pos related to Cos
CO1	Identify whether the given differential equation of first order is exact or not.	PO1,PO2,PO3,PO4,PO5,PO12
CO2	Solve higher differential equation and apply the concept of differential equation to real world problems	PO1,PO2,PO3,PO4,PO5,PO12
CO3	Evaluate the line, surface and volume integrals and converting them from one to another	PO1,PO2,PO3,PO4,PO5,PO12
CO4	Analyze the engineering problems using the concept of Laplace transforms	PO1,PO2,PO3,PO4,PO5,PO12
CO5	Gain knowledge to tackle engineering problems using the concepts of Inverse Laplace transforms.	PO1,PO2,PO3,PO4,PO5,PO12

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Engineering Mathematics Volume-I &II by T.K.V. Iyengar, S.Chand publication.

Reference Books:

- 1. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11thReprint, 2010.
- 2. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. Engineering Mathematics, volume-I&II, E. Rukmangadachari& E.Keshava Reddy Pearson Publishers.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3							3
CO2	2	2	2	3	3							2
CO3	3	2	2	2	2							2
CO4	2	3	3	2	2							2
CO5	3	2	3	2	2							2
Average	2.6	2.2	2.4	2.2	2.4							2.2

(20BSBH07)APPLIED CHEMISTRY (Common to EEE,ECE and CSE)

L	Т	Р	С
3	0	0	3

Course Objectives:

- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To provide the information regarding hardness of water, effects of hard water in boilers and treatment methods to avoid bad effect on human health. To check the parameters of various water samples by experimental techniques.
- To make the properties and applications of polymers and engineering materials.
- To make apply the principle of band diagrams in application of conductors and semiconductors.
- To make students familiar with importance of electrochemical processes in nature and industry, like coating of objects with metals or metal oxides through electro deposition.

UNIT – I: WATER QULAITY AND ITS TREATMENT

INTRODUCTION: Introduction – hardness of water – Causes of hardness - Types of hardness: temporary and permanent – expression and units of hardness –Numerical problems on estimation of hardness.

CHEMICAL ANALYSIS OF WATER: Estimation of hardness of water by EDTA method, acidity, alkalinity and dissolved oxygen (BOD & COD).

BOILER TROUBLES: scales and sludges, caustic embrittlement, boiler corrosion and priming and foaming.

SOFTENING OF WATER: Internal Conditioning - Phosphate Conditioning, Calgon Conditioning; **External Treatment -** Zeolite process and Ion-exchange process, advantages and applications.

WATER FOR MUNICIPAL TREATMENT: Disinfection, Chlorination – Breakpoint Chlorination, Ozonization, UV Treatment – Reverse Osmosis: Desalination of Brakish water by Electrodialysis.

UNIT – II: MOLECULAR STRUCTURE & THEORIES OF BONDING:

Atomic and Molecular orbitals, Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N_2 , O_2 and H_2^+ molecules. π molecular orbitals of 1,3 butadiene, CO_2 and benzene.

CRYSTAL FIELD THEORY (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d- orbitals in Tetrahedral, Octahedral and square planar geometries (One Specific Example for Each)

UNIT - III: ELECTRO CHEMISTRY AND APPLICATIONS

Introduction to electrochemistry, electrodes-concepts of reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode); Electrochemical cell, Nernst equation cell potential calculation

and numerical problems, pH metry, potentiometry-potentiometric titrations (redox titration), concept of conductivity- Specific, equivalent & molar conductance and cell constant, conductivity cell, conductometric titration (acid-base titrations).

Primary cells – Zinc – air, Na-air batteries, secondary cells – Nickel-Cadmium (NiCd), and lithium ion batteries-working of the batteries including cell reactions; fuel cells: Hydrogen-Oxygen, methanol fuel cells- working of the cells and applications.

UNIT-IV: POLYMER CHEMISTRY

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics – Thermoplastics and Thermosettings, Preparation, properties and applications of PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers – Buna-S, Buna-N preparation, properties and applications.

Conducting polymers – Polyacetylene, polyaniline, polypyrroles-mechanism of conduction and applications.

UNIT – V: MODERN ENGINEERING MATERIALS

i) Semiconductor : Materials, superconductors – basic concept, band diagrams for conductors, semiconductors and insulators, effect of doping on band structures.

ii) **Supercapacitors:** Introduction, basic concept – classification-applications.

iii) Nanochemistry : Introduction, classification of nanometerials, properties and application of fullerence, carbon nanotubes and grapheme nanoparticles.

Course Outcomes

On suc	POs related to COs	
CO1	The understanding the problem of water and its treatments.	PO1,PO2,PO3
CO2	The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.	PO1,PO2,PO3
CO3	The required principles and concepts of electrochemistry	PO1,PO2,PO3,PO7
CO4	The knowledge of polymers, elastomers & plastics.	PO1,PO2
CO5	The required skills to get clear concepts on nano technology, semi conductors, carbon nano tubes.	PO1,PO2

SUGGESTED TEXT BOOKS:

- 1. Engineering Chemistry by P.C.Jain & M.Jain; Dhanpat Rai Publishing Company (P) Ltd., New Delhi.
- 2. Arun Bahl, B.S. Bahl and G.D. Tuli, Essentials of Physical chemistry, S. Chand Publication, New Delhi 2012.
- 3. Organic Chemistry: Structure and Function by K.P.C. Volhardt and N.E.Schore, 5th Edition.
- 4. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane

REFERENCES

1. G.V. Subba Reddy, K.N. Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.

2. J.D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C0												
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	3	2	3	-	-	-		-	-	-	-	-
CO3	3	3	2				3	-		-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-		-	-	-	-
Average	3	2.2	2	-	-	-	3		-	-	-	-

(20ES0204) Network Analysis (EEE)

L T P C

3 0 0 3

I B.Tech . II Sem Syllabus

Course objective: To help students develop an understanding on analyzing electrical circuits using various techniques. To make the student familiarize with the fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.

UNIT- I Network Topology

Definitions – Graph – Tree, Basic Cutset and Basic Tieset Matrices for Planar Networks – Loop and Nodal Methods of Analysis of Networks & Independent Voltage and Current Sources – Duality & Dual Networks. Nodal Analysis, Mesh Analysis.

UNIT-II RL AND RC CIRCUITS:

The Source free RL Circuit, The Source free RC Circuit, Properties of Exponential Response, Natural & Forced Response, RLC Circuits, Complete Response of Source free parallel RLC Circuits, Source free Series RLC Circuits.

UNIT-III A.C. TRANSIENT ANALYSIS:

Transient Response of R-L, R-C, R-L-C Series Circuits for Sinusoidal Excitations -Solution Method Using Differential Equations and Laplace Transforms

UNIT-IV THREE PHASE A.C. CIRCUITS

Three Phase A.C. Circuits Importance of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load – Relation between voltages, currents of line and phase values in star and delta connection – Problems in balanced loads of star and delta connections – Measurement of 3 phase power using two wattmeter method (Derivation and Problems) – Effects of unbalanced loads in Star and Delta system

UNIT-V FILTERS:

Introduction, the neper & decibel, Characteristic Impedance of symmetrical networks, Currents & voltage ratios as exponentials; the propagation constant, Hyperbolic trigonometry, Properties of symmetrical networks, Filter fundamentals; pass and stop bands,

Behavior of characteristic impedance, The constant – k low pass filter, the constant – k high pass filter, band Pass Filters ,band reject filters - illustrated problems.

Course Outcomes:

On suc	cessful completion of the course, students will be able to	Pos reiated to Cos
CO1	The fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.	PO1,PO2,PO9
CO2	Given a network, find the equivalent impedance by using network reduction techniques	PO3,PO9
CO3	Determine the current through any element and voltage across any element	PO1,PO2,PO4
CO4	The understand the General case of parallel resonance circuit.	PO1,PO2,PO4,PO9
CO5	Apply the network theorems suitably	PO1,PO2,PO3

.Text Books:

- 1. W H Hayt, J E Kemmerly and S M Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, 7th edition, 2010.
- 2. John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.

Reference Books:

 Van Valkenburg, "Network Analysis", PHI, 3rd Edition, 2011. N C Jagan & C Lakshminarayana "Network Analysis" BS Publications 3rd Edn.2014

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO9	PO10	PO11	PO12
CO1	1	3						2			
CO2			2					3			
CO3	1	2		3							
CO4	1	2		3				1			
CO5	2	3	2								
Average	1.25	2.5	2	3				2			

R20-PYTHON PROGRAMMING

Course Objectives:

- Introduction to Scripting Language.
- Exposure to various problems solving approaches of computer science.

<mark>UNIT I</mark>

Introduction: History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

<mark>UNIT II</mark>

Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

<mark>UNIT III</mark>

Data Structures: Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences. Comprehensions.

<mark>UNIT IV</mark>

Functions: Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

Modules: Creating modules, import statement, from. Import statement, name spacing.

Python packages: Introduction to PIP, Installing Packages via PIP, Using Python Packages.

<mark>UNIT V</mark>

Object Oriented Programming OOP in Python: Classes, 'self-variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding,

Error and Exceptions: Difference between an error and Exception, Handling Exception, try except block, Raising Exceptions, User Defined Exceptions.

Course Outcomes:

On such able to	ccessful completion of the course, students will be	POs related to Cos
able to		
CO1	understanding of the Making Software easily right	PO1,PO2,PO3,PO5,PO9,PO10,PO12
COI	out of the box.	
COA	The knowledge to about Experience with an	PO2,PO3,PO5,PO9,PO10
CO2	interpreted Language.	
CON	The understand the To build software for real	PO1,PO3,PO5,PO10,PO12
CO3	needs.	
CO4	Prior Introduction to testing software	PO3,PO5,PO10,PO12
CO5	understand Object Oriented Programming OOP in	PO2,PO3,PO5,,PO10
05	Python	

Text Books :

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 2. Learning Python, Mark Lutz, Orielly.

References:

- 1. Think Python, Allen Downey, Green Tea Press.
- 2. Core Python Programming, W.Chun, Pearson.
- 3. Introduction to Python, Kenneth A. Lambert, Cengage.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	2	2		2				1	1		2
CO2		2	2		2				2	2		
CO3	2		3		2					2		2
CO4			2		1					3		2
CO5		1	2		2					2		
Average	1	1.0	2.2		1.8				0.6	2		2

(20BSBH08)APPLIED CHEMISTRY LAB (Common to EEE,ECE and CSE)

L	Т	Р	С
0	0	3	1.5

Course Objectives: The chemistry laboratory course will consist of experiments illustrating the principles of chemistry relevant to the study of science and engineering. The student will learn:

- The hygiene aspects of water would be in a position to design methods to produce potable water using modern technology.
- The preparation and properties of synthetic polymers and other material that would provide sufficient impetus to engineer these to suit diverse applications.

LIST OF EXPERIMENTS:

Choice of 10 experiments from the following:

- 1. Estimation of hardness of water by complexometric method using EDTA.
- 2. Determination of Alkalinity of water.
- 3. pH Metry- Analysis of acidic and Basic water samples.
- 4. Estimation of Dissolved oxygen in water.
- 5. Estimation of chloride ion in water sample by mohr's method.
- 6. Determination of strength of an acid in pb-acid battery.
- 7. Preparation of polymer bakalite.
- 8. Determination of strength of given strong acid and strong base solution by conductometric titration.
- 9. Determination of rate constant of acid catalysed hydrolysis of methyl acetate.
- 10. Preparation of nano material's by precipitation.

COURSE OUTCOMES								
CO1	Acquired the practical skill to handle the analytical methods with confidence.(PO1,PO2,PO3)							
CO2	The desirable limits of various constituents in water analysis and its importance. (PO1, PO2)							
CO3	Understand of practical molecular properties such as lead acid batteries, conductance of solutions, etc (PO1, PO2, PO3)							
CO4	Analyze the rate constant of a reaction from concentration – time relationships.(PO1,PO2,PO4)							
CO5	Analyze the preparations, properties of polymers and nano materials in modern technology. (PO1, PO2, PO3,PO5).							
CO6	Follow the ethical principles in implementing the experiments (PO8)							
C07	Do experiments effectively as an individual and as a team member in a group. (PO9)							
CO8	Communicate verbally and in written form, the understanding about the experiments. (PO10)							
CO9	Continue updating their skill related to analytical methods, lead acid batteries rate constant in implementing experiments in future. (PO12)							

REFERENCE BOOKS:

- 1. Vogel's Text book of Quantitative Chemical Analysis, J. Mendham et al, Pearson Education, Sixth Edition, 2012.
- 2. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi).
- 3. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi).

PO CO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	P S O 1	P S O 2
CO1	2	3	2											
CO2	3	2												
CO3	2	3	2											
CO4	3	2		2										
CO5	2	2	3		3									
CO6								3						
C07									2					
CO8										3				
CO9												3		
AVEG	2.6	2.4	2.3	2	3	-	-	3	2	3	-	3	2	2

PYTHON PROGRAMMING LABORATORY-R20

Exercise 1 - Basics

a) Running instructions in Interactive interpreter and a Python Script.

b) Write a program to purposefully raise Indentation Error and correct it.

Exercise 2 - Operations

a) Write a program to compute distance between two points taking input from the user (Pythagorean Theorem).

b) Write a program add.py that takes 2 numbers as command line arguments and prints its sum.

Exercise - 3 Control Flow

a) Write a Program for checking whether the given number is a even number or not.

b) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, ..., 1/10.

c) Write a program using a for loop that loops over a sequence. What is sequence?

d) Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.

Exercise 4 - Control Flow - Continued

a) Find the sum of all the primes below two million.

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By

starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...

b) By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

<mark>Exercise - 5 - DS</mark>

a) Write a program to count the numbers of characters in the string and store them in a dictionary data structure

b) Write a program to use split and join methods in the string and trace a birthday with a dictionary data structure.

Exercise - 6 DS - Continued

a) Write a program combine lists that combines these lists into a dictionary.

b) Write a program to count frequency of characters in a given file. Can you use character

frequency to tell whether the given file is a Python program file, C program file or a text file?

Exercise - 7 Files

a) Write a program to print each line of a file in reverse order.

b) Write a program to compute the number of characters, words and lines in a file.

Exercise - 8 Functions

a) Write a function ball collide that takes two balls as parameters and computes if they are

colliding. Your function should return a Boolean representing whether or not the balls are

colliding.

Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius

If (distance between two balls centers) <= (sum of their radii) then (they are colliding)

b) Find mean, median, mode for the given set of numbers in a list.

Exercise - 9 Functions - Continued

a) Write a function nearly equal to test whether two strings are nearly equal. Two strings a and b are nearly equal when a can be generated by a single mutation on b.

b) Write a function dups to find all duplicates in the list.

c) Write a function unique to find all the unique elements of a list.

Exercise - 10 - Functions - Problem Solving

a) Write a function cumulative product to compute cumulative product of a list of numbers.

b) Write a function reverse to reverse a list. Without using the reverse function.

c) Write function to compute gcd, lcm of two numbers. Each function shouldn't exceed one line.

Exercise 11 - Multi-D Lists

a) Write a program that defines a matrix and prints.

b) Write a program to perform addition of two square matrices.

c) Write a program to perform multiplication of two square matrices.

Exercise - 12 - Modules

a) Install packages requests, flask and explore them using (pip).

b) Write a script that imports requests and fetch content from the page Eg. (Wiki).

c) Write a simple script that serves a simple HTTP Response and a simple HTML Page.

Course		COURSE OUTCOMES
	CO1	Design the algorithm and flowchart for the given problem. (PO1, PO2,PO3)
	CO2	Develop the programs on control statements and arrays. (PO1, PO2, PO3, PO5)
Lab	CO3	Analyze the concepts on functions and strings. (PO1, PO2, PO9)
Python Programming Lab	CO4	Solve the memory access problems by using pointers and design the programs on structures and unions. (PO1, PO2, PO4, PO5)
gram	CO5	Analyze the basics of file handling mechanism that is essential for understanding the concepts of management systems. (PO1, PO2)
Prc	CO6	Follow the ethical principles in implementing the programs (PO8)
ython	CO7	Do experiments effectively as an individual and as a team member in a group. (PO9)
L d	CO8	Communicate verbally and in written form, the understanding about the experiments. (PO10)
	CO9	Continue updating their skill related to loops, pointers and files implementing programs in future. (PO12)

References:

- 1. Think Python, Allen Downey, Green Tea Press.
- 2. Core Python Programming, W.Chun, Pearson.
- 3. Introduction to Python, Kenneth A. Lambert, Cengage.

CO-PO Mapping

Cou rse	PO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	P S O 1	P S O 2
p	CO1	3	3	2											
La	CO2	3	3	3		2									
ng	CO3	2	3							3					
mi	CO4	3	2		3	3									
am	CO5	3	3												
gra	CO6								3						
Prc	CO7									2					
n j	CO8										3				
Python Programming Lab	CO9												3		
Py	AVEG	2.8	2.8	2.5	3	2.5	-	-	3	2.5	3	-	3	3	2

| AUTONOMOUS | ACCREDITED BY NAAC RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

(20MCBH01) ENVIRONMENTAL SCIENCE

(common to all)

I B.Tech II Sem

L	Т	Р	С
0	0	0	0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

UNIT-I ECOSYSTEMS AND NATURAL RESOURCES:

Definition, Scope and Importance of ecosystem - Structure and function of an ecosystem -Energy flow in the ecosystem – Food chain, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem

NATURAL RESOURCES:

Classification of Resources: Living and Non-Living resources, Water resources: use and over utilization of surface and ground water, Dams: benefits and problems. Mineral resources: use and exploitation, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources.

UNIT-II BIODIVERSITY:

Definition: genetic, species and ecosystem diversity - Bio-geographical Introduction classification of India - Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values - Biodiversity at global, National and local levels - India as a megadiversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - Endangered and endemic species of India - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT-III ENVIRONMENTAL POLLUTION AND CONTROL :

Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Noise pollution

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

E- WASTE MANAGEMENT: Definition of E-Waste, Effect of E-Waste on Humans and Environment, Treating and management of E-Wastes.

UNIT – IV SOCIAL ISSUES AND THE ENVIRONMENT:

Water conservation, rain water harvesting, watershed management –its problems and concerns. Climate change, global warming, acid rain, ozone layer depletion,– Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT – V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, population explosion, Environment and human health- Relationship between Health, wellness and fitness, Human Rights and duties of a citizen, value education – definition of value, value education in the context of Environment, principles of value Education. Women and child welfare, role of Information Technology in Environment and Human Health.

	coutcomes.	
On suc	cessful completion of the course, students will be able to	POs related to COs
CO1	Students will get the sufficient information that will clarify modern environmental concepts like equitable use of natural resources, more sustainable life styles etc.	PO5,PO7,PO8,PO9
CO2	Students will realize the need to change their approach so as to perceive our own environmental issues correctly, using practical approach based on observation and self learning	PO5,PO9,PO11
CO3	Students become conversant with the fact that there is a need to create a concern for our environment that will trigger pro- environmental action	PO5,PO7,PO11
CO4	By studying environmental sciences, students is exposed to the environment that enables one to find out solution of various environmental problems encountered on and often.	PO2,PO7,PO12
C05	At the end of the course, it is expected that students will be able to identify and analyze environmental problems as well as the risks associated with these problems and efforts to be taken to protect the environment from getting polluted	PO5,PO8,PO9,PO12

Course Outcomes:

TEXT BOOKS:

1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.

2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela.2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BSPublications.
- 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

PO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO	1									0		
CO1							3	2	2			
CO2					3				2		2	
CO3					3		2				2	
CO4		3					2					3
CO5					3			3	3			3
Average		3			3		2.3	2.5	2.3		2	3

Semester – III Course / Branch: B.Tech-Electrical & Electronics Engineering

S.N	Course	Course Title	С	L	Т	Р	Credit
0	Code						S
1	20BSBH12	Mathematics-III	BS	2	1	0	3
2	20PC0205	DC Machines & Transformers	C	3	0	0	3
3	20PC0401	Electronic Devices & Circuits	C	3	0	0	3
4	20PC0206	Electromagnetic Fields	C	3	0	0	3
5	20HSMB01	Economics for Engineers	HS	3	0	0	3
6	20PC0207	Network Theory Laboratory	V Lab	0	0	3	1.5
7	20PC0404	Electronic Devices & Circuit Laboratory	C Lab	0	0	3	1.5
8	20PC0208	DC Machines & Transformers Lab	C Lab	0	0	2	1.5
9	20SO0201	Circuits Simulation & Analysis using PSPICE & MATLAB	SOC	1	0	2	2
		Total					21.5
10	20MCBH0 2	Constitution of India	М	0	0	0	0

Semester – IV Course / Branch: B.Tech-Electrical & Electronics Engineering

S.No	Course Code	Course Title	С	L	Т	Р	Credit s
1	20BSBH13	Mathematics-IV	BS	3	0	0	3
2	20ES0505	Data Structures and Algorithms with Python	ES	3	0	0	3
3	20PC0209	Power Systems-I	C	3	0	0	3
4	20PC0403	Digital Electronics	C	3	0	0	3
5	20PC0210	AC Machines	C	3	0	0	3
6	20PC0211	AC Machines lab	C Lab	0	0	3	1.5
7	20PC0212	Electrical Circuits & Simulation Lab	C Lab	0	0	3	1.5
8	20ES0506	Data Structures with Python lab	ES Lab	0	0	3	1.5
9	20SO0202	PLC Design	S	1	0	2	2
		Total					21.5
	20IN0201	Internship (Mandatory) for 6 we	eeks durat	ion durir	ng sum	mer v	acation

Course Code		L	Т	Р	С					
20BSBH12	MATHEMATICS-III (Common to EEE & ECE)	3	0	0	3					
D ••4	Basic Equations, Differentiations, Integration Semester			III						
Pre-requisite	and Basic Probability									
Course Objecti										
	s at providing the student with the knowledge on various n									
	tions, fitting of curves, interpolating the polynomials, eva									
equations and solution of differential equations. The student develops the idea of using										
continuous/discrete transforms and the theory of Probability										
Course Outcomes (CO): Student will be able to										
 Apply nu 	imerical methods to solve algebraic, transcendental equatio	ns a	and f	itting	of					
curves										
• Derive ir	terpolating polynomials using interpolation formulae									
• Solve dif	ferential and integral equations numerically									
 Understand the use of fourier transforms to solve difference equations and apply z- 										
transforms to solve difference equations.										
	rate the ability probability concepts to anaylyse and solve r	eal	wor	ld proł	olems					
- Demonstrate the domey probability concepts to analytyse and solve real world problems										
UNIT – I	Solution of Algebraic & Transcendental Equations			9 Hrs						
Solution of Algeb	raic and Transcendental Equations: Introduction- Bisection	n M	etho	d - M	ethod					
-	- Newton-Raphson Method.									
	ing of straight line – Second degree curve-Exponential cur	ve-	ром	ver cur	ve by					
method of least so			1		2					
UNIT – II	Interpolation & Numerical Differentiation			8 Hrs						
Interpolation:	Finite differences-Forward differences- Backward differences-	erer	ices-	New	vton's					
forward and back	ward interpolation formulae – Lagrange's formulae.									
	rentiation: Derivatives using Newton's forward and bac	kw	ard	diffe	rence					
formula	č									
UNIT – III	Numerical Integration & Solution of Initial value			9 Hrs						
	problems to Ordinary differential equations									
Numerical Integ	ration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's	3/8	Rul	e.						
e					card's					
	Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of suggestive Approximations Medified Euler's Method Purge Kutte, Methods									
		itta	Me							
	ssive Approximations-Modified Euler's Method-Runge-Ku	itta		thods.						
UNIT – IV	ssive Approximations-Modified Euler's Method-Runge-Ku Fourier Transforms & Z-Transforms		1	thods. 2 Hrs						
UNIT – IV Introdution – Fo	ssive Approximations-Modified Euler's Method-Runge-Ku Fourier Transforms & Z-Transforms arier integral theorem (only statement) – Fourier sine ar	d c	1 osin	thods. 2 Hrs le inte						
UNIT – IV Introdution – Fou Fourier transform	ssive Approximations-Modified Euler's Method-Runge-Ku Fourier Transforms & Z-Transforms urier integral theorem (only statement) – Fourier sine and – Fourier sine and cosine transforms – Properties – Inverse	d c e tra	1 cosin unsfo	thods. 2 Hrs e inte orms.	grals-					
UNIT – IV Introdution – Fou Fourier transform Z-Transform- Ir	ssive Approximations-Modified Euler's Method-Runge-Ku Fourier Transforms & Z-Transforms arier integral theorem (only statement) – Fourier sine ar – Fourier sine and cosine transforms – Properties – Inverse werse Z-transform- properties-Damping Rule – Shifting ru	d c e tra ile-]	1 osin insfo Initia	thods. 2 Hrs le inter orms. al and	grals- Final					
UNIT – IV Introdution – Fou Fourier transform Z-Transform- In value theorem -	ssive Approximations-Modified Euler's Method-Runge-Ku Fourier Transforms & Z-Transforms urier integral theorem (only statement) – Fourier sine and – Fourier sine and cosine transforms – Properties – Inverse	d c e tra ile-]	1 osin insfo Initia	thods. 2 Hrs le inter orms. al and	grals- Final					

UNIT – V	Probability theory
Probability proba	ability axioms addition law and multiplicative law of

9 Hrs

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.
- 3. Probability & Statistics by T.K.V. Iyengar, S.Chand publications.

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.
- 3. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S. Chand publication.
- 4. Probability and Statistics for Engineering and Sciences by Jay L.Devore, CENGAGE.

Online Learning Resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc17_ma14/preview/</u> noc18ma12.
- 2. <u>http://nptel.ac.in/courses/111105090/111107056</u>/117101056/17
- 3. onlinelibrary.wiley.com

CO/	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	12	12
CO1	3	2		2			1				1	2	3	2
CO2	2	2		1			1					2	2	2
CO3	3	3		3								2	3	2
CO4	3	2	2	2			2					2	2	2
CO5	3	3	2	1			1					1	1	1

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

COLLEGE OF ENGINEERING & TECHNOLOGY | AUTONOMOUS | ACCREDITED BY NAAC |

Course Code			Τ	Р	C					
20PC0205	DC MACHINES & TRANSFORMERS	3	0	0	3					
Pre-requisite	Semester	r		III	L					
Course Objecti	ves:									
Student will be	able to									
Study princip	le and operation of DC machines and transformers and star	ters	•							
• Understand th	e constructional details of DC machines and Transformers									
• Analyze the p	erformance characteristics of DC machines and transforme	er								
	iency, regulation and load sharing of DC machines and tra	nsfc	orme	rs Des	ign					
	cuit of transformer									
Course Outcom	nes (CO):									
At the end of this	course, students will demonstrate the ability to									
• Understand the	concepts of magnetic circuits, principle and operations of	DC	macl	nines,						
starters and sing	gle and three phase transformers									
	re reaction, parallel operation, speed control and character	istic	s of	DC						
	machines. Also analyze the performance characteristics with the help of OC and SC tests of transformer.									
• Evaluate generation	ated emf, back emf, speed, efficiency and regulations of	DC	mac	chines	and					
-	regulation of transformer also load sharing of parallel conr									
	principles and functioning of single-phase transformers, in, and troubleshoot transformer circuits for various applied									
systems.	i, and troubleshoot transformer encluss for various appri-	can	115 1		uicai					
•	analyzing, designing, and implementing three-phase tra-	ansf	orm	er svst	tems					
	understanding of their construction, operation, and appl									
power distribution										
UNIT – I	Principles of electromechanical energy conversion			10Hrs	5					
Energy in magne	tic system, field energy and mechanical force, multiply-ex	cite	d ma	gnetic	field					
sustance former /4	anounce in evertains with non-constant second to a second				a atrii -					
•	orques in systems with permanent magnets, energy con equations of electro mechanical systems.	vers	sion	via el	ectric					
UNIT – II	DC Generators			9Hrs						
	etails of DC machine, principle of operation of DC	-								
	types, emf equation, armature reaction, effect of brush			-	-					
-	tizing ampere turns, compensating windings, commutatio									
	commutation, methods of improving commutation									
characteristics of different types of generators. Parallel operation of DC Generators: DC shunt										
and series generators in parallel, equalizing connections.										
UNIT – III	DC Motors			10Hrs						
Force on conduc	tor carrying current, back emf, Torque and power deve	elope	ed b	y arm	ature.					

speed control of DC motors (Armature control and Flux control methods), Necessity of starters,

constructional details of 3-point and 4-point starters, characteristics of DC motors, Losses in DC machines, condition for maximum efficiency.

Testing of DC machines: Brake test, Swinburne's test, Hopkinson's test, Fields test, Retardation test.

UNIT – IV	Single Phase Transformers10Hrs							
Principle, construction and operation of single-phase transformers, equivalent circuit, phasor								
diagrams (no load and on load), Magnetizing current, effect of nonlinear B-H curve of magnetic								
core material, harmonics in magnetization current, losses and efficiency Testing - open circuit								
and short circuit	tests, voltage regulation, Sumpner's test, separation of h	steresis and edd						
current losses. Pa	rallel operation of single-phase transformers, Autotransform	ners - construction						
principle, applications and comparison with two winding transformer.								
UNIT – VThree Phase Transformers9Hrs								

Three-phase transformer – construction, types of connection and their comparative features, Phase conversion - Scott connection, Tap-changing transformers - No-load and on-load tap changing of transformers, Three-winding transformers- Cooling of transformers.

Textbooks:

1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

2. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

Reference Books:

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education,

2013.

- 2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.
- 3. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002. Online Learning Resources:

Web Links:

- 1. <u>https://onlinecourses.nptel.ac.in/noc21_ee71/preview</u>
- 2. https://onlinecourses.nptel.ac.in/noc21_ee24/preview

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 12	PSO 12
CO1	3	2	2	1		3							3	2
CO2	3	2	2	1		3							3	2
CO3	3	2	2	1	2	3							3	2
CO4	3	2	2	1		3							3	2
CO5	2	1	2	2		2							2	2

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code		L	T	Р	C					
20PC0401	ELECTRONIC DEVICES AND CIRCUITS	3	0	0	3					
Pre-requisite	Semes	ter		III	L					
•	Course Objectives:									
The objectiv	ves of this course:									
• To understand the characteristics and applications of P-N junction diode, special										
1 1	purpose devices in electronic circuits.									
	liarize working principle of BJT, JFET and MOSFET a	ıd to	desig	gn sing	;le					
•	nplifier circuits using low frequency model.	•								
	yze and design various electronic devices and circuits u	sing	PN J	unctio	n					
diode, B	JT, JFET and MOSFET.									
	Course Outcomes (CO):									
	ompletion of this course, the student will be able to									
	rate the characteristics of PN Junction Diode, Rectifi	ers, F	ilters	s, BJT	,					
	OSFET and special purpose electronic devices.		_							
	numerical and analytical problems in Rectifiers, Filters,	Frans	istor	biasin	g					
	nd Transistor amplifiers.	1 .	1 4	C*14						
e	nd develop electronic circuits such as Rectifiers with a									
	or biasing circuits and Transistor amplifiers. Solve engine solutions relating to electronic devices and circuits.	eering	g pro	oblems	and					
	e techniques of transistor biasing and thermal stabilization, de	monst	ratin	a the al	nility					
	and optimize transistor circuits for reliable and stable perform									
applicatio										
	ertise in the integrated circuit fabrication process, demonstrati	ng the	abili	ty to						
	nd, analyze, and apply techniques involved in the manufactur									
circuits, e	nsuring a comprehensive understanding of semiconductor dev	ice fa	brica	tion.						
UNIT – I	P-N JUNCTION DIODE		1	12 Hrs						
P-N Junction D	iode: Open circuited PN Junction, Forward and Reverse	Bias	of PN	J June	tion					
	nents in a PN diode, Volt - Ampere Characteristic, Ten									
-	acteristic, Breakdown Mechanisms, Zener Diode - Zen	-		-						
	e Clippers and Clampers.		oue		luge					
UNIT – II										
	nition and Types, Half Wave Rectifier, Full wave l				U					
Rectifier, Comparison of Rectifiers, Filter - Definition and Types, Inductor Filter, Capacitor Filter, L-section Filter, CLC or π - section Filter, Comparison of various types of filters.										
Special Purpose Devices: Varactor Diode, Tunnel Diode, Uni Junction Transistor, SCR,										
Solar Cell, LCD					,					

UNIT – III	TRANSISTOR CHARACTERISTICS	12 Hrs								
Transistor Char	racteristics: BJT: BJT - Construction, Operation, T	ransistor Current								
Components, Transistor as an Amplifier, Transistor Characteristics - CB, CE and CC, Eber's moll model										
FET: Types, JFET - Construction, Working, Characteristics, MOSFET - types, Construction,										
Working, Charao	Working, Characteristics, Comparison between JFET and MOSFET.									
UNIT – IV	UNIT – IV TRANSISTOR BIASING AND THERMAL STABILIZATION									
Transistor Biasin	ng and Thermal Stabilization: Need for Transistor biasing	, Operating point,								
Load line analys	sis, Biasing methods - Fixed bias, Collector to Base bias,	Self-bias, stability								
factors, Bias compensation, Thermal Runaway, Thermal stability.										
UNIT – V	INTEGRATED CIRCUIT FABRICATION PROCES	SS 10 Hrs								
Integrated circ	cuit fabrication process: oxidation, diffusion, ic	on implantation,								
photolithography	y, etching, chemical vapor deposition, sputtering, twin-tub	CMOS process.								
Textbooks:										
1. J. Millr	nan, C. Halkias, "Electronic Devices and Circuits", Tata M	c-Graw Hill,								
4 th Editi	on,2010.									
2. R.L.Bo	ylestad and Louis Nashelsky,"Electronic Devices	and								
Circuit	s",Pearson Publications,,9thEdition,2006.									
3. S.Saliv	ahanan, N.Suresh Kumar, Electronic Devices and Circuits,	McGraw Hill								
Educat	ion (India) Private Limited, 3rdEdition, 2012.									
Reference Book	XS:									
1. Jacob Hill, 2	Millman, C. Halkies, C.D.Parikh, "Integrated Electronics", 009.	Tata Mc-Graw								
	no, KBR Murty, K Raja Rajeswari, PCR Pantulu, "Electron rcuits", Pearson, 2 nd edition.	ic Devices								
	hanan, Kumar, Vallavaraj, "Electronic Devices and Circui raw Hill, Second Edition	ts", Tata								

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 12	PSO 12
CO1	3	1	2	1	1								3	2
CO2	1	3	2	2	2								2	2
CO3	1	3	2	2	2								2	2
CO4	3	3	2	3	1								2	2
CO5	3	2	3	1	2								1	1

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code		L	Τ	Р	С
20PC0206	ELECTROMAGNETIC FIELDS	3	0	0	3
Pre-requisite	Semeste	r		III	
Course Objecti					
To make the stu	dent learn about:				
	oncerning static electric fields: Columb"s law, Gauss		law;	the 1	aws
	tatic magnetic fields: Biotsavart law, ampere circuital law.				
	l"s equations concerned with static electric fields and stati		-		
	ce between the behaviors of conductors and dielectrics in			fields,	The
	d and energy density in (i) static electric field (ii) magnetic				
	etic wave propagation and attenuation in various medium				
	ndaries between media and Significance of Poyinting	thec	rem	with	it''s
Vector.					
Course Outcon					
	f this course student will				
	wledge on basic principles, concepts and use of fundament				
	Law, Coulomb"s law, Biot-Savart law, ampere circuital la				`S
	to find fields and potentials for a variety of situations inclu-	iding	g cha	arge	
	ons and capacitors.		1 /	<i>, ,</i> .	
	nderstand vector algebra, 3-dimensional co-ordinate system			ostatio	cs,
magnetis	statics, time-varying fields and interaction between electric	ity a	ana		
U	nd the behavior of magnetic and electric fields in the prese	nce	of di	electri	C
	etic materials; appreciate how to simply modify expressio				
	etance from free space expressions.	15 10	n cu	puertui	
	thorough understanding of magnetic potential concepts, d	emo	nstra	ating t	he
	apply principles in analyzing magnetic fields, calculating				
	ng related engineering problems	υ		1	,
	a comprehensive understanding of time-varying fields, sho	owca	asing	the	
capability	v to analyze, model, and apply principles related to electron	nagi	netic	fields	
	dynamic behavior in various engineering applications.				
UNIT – I	ELECTROSTATICS		1	2 Hrs	;
Electrostatic Fie	lds - Coulomb"s Law - Electric Field Intensity(EFI) due to	Lin	le, S	urface	and
Volume charges	- Work Done in Moving a Point Charge in Electrost	atic	Fie	ld-Eleo	ctric
	point charges, line charges and Volume Charges - Po				
Gauss''s Law- A	pplication of Gauss"s Law-Maxwell"s First Law - Nu	mer	ical	Proble	ems.
	ion and Poisson"s Equations - Solution of Laplace"s				
	ic Dipole - Dipole Moment - Potential and EFI due to	Ele	ectric	: Dipo	ole -
_	ctric Dipole in an Electric Field – Numerical Problems.	-			
UNIT – II	CONDUCTORS AND DIELECTRICS			2 Hrs	
	ductors in an Electric Field-Conductors and Insulators – E				
	Iaterial – Polarization – Dielectric Conductors and Di				•
Conditions – C	apacitance-Capacitance of Parallel Plate, Spherical & Co	-axi	al ca	pacito	rs –

Energy Stored and Energy Density in a Static Electric Field – Current Density – Conduction and Convection Current Densities – Ohm"s Law in Point Form – Equation of Continuity – Numerical problems.

Numerical probl	ems.									
UNIT – III	MAGNETO STATICS	12 Hrs								
Static Magnetic	Fields – Biot-Savart Law – Oerstead"s experiment – M	Magnetic Field								
Intensity(MFI) d	ue to a Straight, Circular & Solenoid Current Carrying Wi	ire – Maxwell"s								
Second Equation	a. Ampere"s Circuital Law and its Applications Viz., MFI D	Oue to an Infinite								
Sheet of Current and a Long Current Carrying Filament – Point Form of Ampere's Circuital										
Law - Maxwell's Third Equation - Numerical Problems.										
Magnetic Force -	- Lorentz Force Equation - Force on Current Element in a	Magnetic Field -								
	ght and Long Current Carrying Conductor in a Magneti									
Between two S	traight and Parallel Current Carrying Conductors - Magn	etic Dipole and								
Dipole moment	- A Differential Current Loop as a Magnetic Dipole - Toro	que on a Current								
Loop Placed in a	Magnetic Field – Numerical Problems.									
UNIT – IV	MAGNETIC POTENTIAL	10 Hrs								
Scalar Magnetic	Potential and Vector Magnetic Potential and its Properties -	Vector Magnetic								
Potential due	to Simple Configuration – Vector Poisson	-								
Self and Mutual I	Inductances – Neumann"s Formulae – Determination of Self	f Inductance of a								
Solenoid and To	roid and Mutual Inductance Between a Straight, Long Wi	re and a Square								
Loop Wire in the	e Same Plane – Energy Stored and Intensity in a Magnetic Fi	ield – Numerical								
Problems.		-								
UNIT – V	TIME VARYING FIELDS	10 Hrs								
Faraday''s Law c	f Electromagnetic Induction – It's Integral and Point Form	ms – Maxwell"s								
Fourth Equatio	n. Statically and Dynamically Induced E.M.F"s - Sim	ple Problems –								
Modified Maxwe	ell"s Equations for Time Varying Fields - Displacement	Current. Wave								
Equations – Uniform Plane Wave Motion in Free Space, Conductors and Dielectrics –										
Velocity, Wave Length, Intrinsic Impedance and Skin Depth – Poynting Theorem – Poynting										
Vector and its Sig	gnificance.									
Textbooks:										
1. Engineeri	ng Electromagnetics by William.H.Hayt, Mc.Graw – Hill, 20)10.								

- 2. Electromagnetic Fields by Sadiku Oxford University Press, 5th Edition, 2010.
- 3. Field Theory K.A.Gangadhar, Khanna Publications, 2003.

Reference Books:

- 1. Electrodynamics by Griffith, PHI, 3rd Edition, 1999.
- 2. Electromagnetics by J.D.Kraus, Mc.Graw Hill Inc, 5th edition, 1999.
- 3. Electromagnetics by Joseph Edminister, Tata Mc Graw Hill, 2006.

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 12	PSO 12
CO1	2		2	3	3		1		-		-		3	2
CO2			2	3	1	2	1						3	2
CO3	2	2		3	2	1							3	2
CO4	1	1	2	3	3	1							3	2
CO5	2	1	2	3	2	2							3	2

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code		L	Т	Р	C
20HSMB01	Economics for Engineers	3	0	0	3
Pre-requisite	Semester			III	L
-	Course Objectives:				
The objecti	ves of this course:				
•	To equip the student with the basic inputs of Managerial Economic Environment of business and to equip them w tools and techniques for improving their decision- making	rith	the 1		
Course out	comes (CO):				
•	Develop a foundational understanding of manage demonstrating the ability to apply economic princip decision-making, analyze business scenarios, and allocation in a corporate context. Master the theory of demand, exhibiting the ability to an factors influencing consumer behavior, quantify demand of these principles to make informed decisions in various econ Attain proficiency in production analysis, showcasing th and optimize production processes, assess resource uti informed decisions to enhance efficiency and produ- economic settings. Gain expertise in market structure and pricing, demonstra analyze different market types, formulate pricing stra- informed business decisions to maximize profitabili economic environments. Develop a foundational understanding of macroeconomic ability to analyze and interpret key economic indicator impact of fiscal and monetary policies.	hes opt aly elas ono: e al liza uctiv ratin ateg	to imiz ze a ticity mic pility tion vity ng th gies, with sho und	nd intu- y, and contexy y to and in va- ne abil and hin va- wcasir lerstan	geria ource apple cts. malyz mak ariou lity t mak ariou ng th d th
UNIT – I	Introduction to Managerial Economics		1	l2 Hrs	5
Definition, Na	ture and Scope, Relationship with other areas in Econo	omi	cs, 1	Produc	ction
	Marketing, Finance and Personnel, Operations research				
managerial ecor	iomist				
UNIT – II	Theory of Demand		1	2 Hrs	;
Elasticity of D	sis – Law of Demand - Elasticity of demand, types an emand. Demand estimation – Marketing research approd for forecasting, forecasting techniques.		-		
UNIT – III	Production Analysis		1	l2 Hrs	•
	tion, Marginal Rate of Technical Substitution, Iso-quan tion with one/two variables, Cobb-Douglas Production Fu				

Scale and Returns to Factors, Economies of scale. Cost concept and types, Determinants of

cost, Cost-Outpu	cost, Cost-Output Function: short run and long run, Break Even Analysis										
UNIT – IV	Market Structure and Pricing practices	10 Hrs									
Features and Typ	pes of different competitive situations - Price-Output determ	ination in Perfect									
competition, Mo	onopoly, Monopolistic competition and Oligopoly. Pricin	ng philosophy –									
Pricing methods	in practice: Price discrimination, product line pricing. P	ricing strategies:									
skimming pricin	g, penetration pricing, Loss Leader pricing. Pricing of multip	ple products.									
UNIT – V	Macro Economics	10 Hrs									
National Income	concept and measurement methods Definition and meaning	ng-characteristics									
of Inflation- type	es of inflation - effects of inflation - Definition and character	istics of business									
cycles-phases of	business cycle - steps to avoid business cycle										
Textbooks:											
1. Manageria	al Economics D M.Mithani										
2. Manageria	al Economics Gupta, Tata Mc Graw -Hill										
Reference Book	(8:										
1. Manag	erial Economics and Financial Analysis, 1/e, Aryasri, TMH, 2013										
2. Manag	erial Economics,Suma Damodaran,Oxford.										

CO/	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	12	12
CO1	2		1		1	3					2		2	1
CO2	3	2	2			2				1	2		2	1
CO3	3					2					2		2	1
CO4	2	3		3			2				3		2	1
CO5	3	1		2			1				2		2	1

AUTONOMOUS | ACCREDITED BY NAAC | RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code	L	Т	Р	C					
20PC0207	Network Theory Laboratory	0	0	3	1.5				
Pre-requisite	Semester			III	·				
	Course Objectives:								
The objectives									
Experime	ntal verification of theorems								
• Experime	ntal verification of two port network parameters								
• Experime	ntal verification of resonance phenomenon								
	Course Outcomes (CO):								
 Course Outcomes (CO): On successful completion of this course the students will be able to CO1 Apply suitable theorems for circuit analysis and verify the results theoretically CO2 Experimental determination of two port network parameters and theoretical verification. CO3 Measure active and reactive power experimentally and verify the theoretical values. CO4 Experimentally determine self inductance, mutual inductance and coefficient of coupling Practically determine band width, Q-factor and verify with theoretical values. CO5 Develop practical expertise in resource management, demonstrating the ability to effectively allocate, utilize, and optimize resources to meet organizational goals and enhance overall operational efficiency. CO6 Follow the ethical principles in implementation of experiments CO7 Do Experiments effectively as individual and as team member in a group. CO8 Communicate verbally and in written form, understanding about the experiments. CO9 Continue Updating the skills related to contemporary technology 									
	PART B: List of Experiments								
	(For Laboratory Examination-Minimum of Ten Experimentation)	me	nts)						
 Verification Verification Verification Verification Verification Frequency Frequency Determination Z and Y Find Transmission Measurem 	n of KCL & KVL for any network. on of Superposition Theorem with analysis. on of Thevenin's Theorem with analysis. on of Norton's Theorem with analysis. on of Maximum Power Transfer Theorem with analysis. response of series resonance circuit with analysis and desig response of parallel resonance circuit with analysis and desig response of Self, Mutual Inductances and Coefficient of Couplin Parameters sion and Hybrid Parameters nent of Reactive Power for Star and Delta Connected Balance nent of 3-Phase Power by Two Wattmeter Method for Unba	ng ced	Loa						

CO/	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	12	12
CO1	2	3	2			2							3	2
CO2	3	2	3			1							3	3
CO3	2	3	3		2	1							3	3
CO4	2	2	3		3								3	3
CO5	2	3	2			2							2	3
CO6								3					1	3
CO7									3				2	3
CO8										3			2	3
CO9												3	1	3

Course Code			L	T	Р	C
20PC0405	ELECTRONIC DEVICES AND CIRCUITS LAB		0	0	3	1.5
Pre-requisite		Semester			III	
	Course Objectives:					
The objectives						
• To unde	erstand the working of various Semiconduc	ctor devices	s a	nd	plot 1	their
character	istics.					
• Students	can find and plot Input & Output characteristics	s of BJT's a	nd]	FET	's	
• To apply	basic electronic devices and circuits in real time	e application	ns.			
	Course Outcomes (CO):					
On successful co	ompletion of this course the students will be abl	e to				
• Have Pr	actical knowledge on R, L, C Compo	nents (Col	our	Cod	es)tes	ting,
	tion, Specifications, Bread Boards, BJT'S,FET'					_
• Demonstr	ate knowledge in different electronic devices an	nd analog cir	rcui	ts.		
• Analyze t	he characteristics of different electronic devices	s and circuit	s lil	ke D	iodes-	· PN
Junction 1	Diode, Zener Diode and Transistors-BJT, FET.					
0	d develop electronic circuits like rectifiers, clip	1 / 1		BJT	FE,	
-	d develop electronic circuits like Diodes, BJTs,		Ds.			
	e ethical principles in implementation of experimentation					
-	iments effectively as individual and as team me	0	-			
	cate verbally and in written form, understanding	-	exp	erim	ents.	
• Continue	Updating the skills related to contemporary tech	nnology				
	List of Experiments					
1	(For Laboratory Examination-Minimum of		me	nts)		
	ction Diode Characteristics (Forward bias & Re					
	iode Characteristics (Forward bias & Reverse b	otas)				
	lippers, Diode clampers ve Rectifier (without and with filter)					
	ve Rectifier (without and with filter)					
	ut & Output Characteristics (CE Configuration)					
-	ut & Output Characteristics (CB Configuration)					
-	ansfer & Output Characteristics (CS Configurat					
	ansfer & Output Characteristics (CD Configurat	/				
	peration and its Measurements					
11. UJT Ch	aracteristics					

COLLEGE OF ENGINEERING & TECHNOLOGY
AUTONOMOUS ACCREDITED BY NAAC
RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. I www.svpcet.org

SRI VENKATESA PERUMAL

CO /	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	0	1	2	12	12
CO1	3	3	3	3	3			2	3				3	2
CO2	3	3	3	2	2	1		3	3				3	2
CO3	3	3	3	2	2	1		2	3				3	3
CO4	3	3	3	2	2	1			3				3	3
CO5	2	3	1	2	2	1		3	1				3	3
CO6								3					3	3
CO7									3				3	3
CO8										3			3	3
CO9												3	3	3

Course Code			L	Τ	Р	С
20PC0208	DC MACHINES & TRANSFORMER	S LAB	0	0	3	1.5
Pre-requisite		Semester			III	

Course Objectives:

The objectives of this course:

- DC motors and DC Generators
- The speed control techniques of DC motors.
- Testing on 1-phase transformers.

Course Outcomes (CO):

On successful completion of this course the students will be able to

- Able to conduct and analyze load test on DC shunt generator.
- Able to understand and analyze magnetization characteristics of DC shunt generator.
- Able to understand and analyze speed control techniques and efficiency of DC machines.
- Able to understand to predetermine efficiency and regulation of single-phase Transformers.
- Able to Separate of losses of single phase transformer
- Follow the ethical principles in implementation of experiments.
- Do Experiments effectively as individual and as team member in a group.
- Communicate verbally and in written form, understanding about the experiments.
- Continue Updating the skills related to contemporary technology.

List of Experiments

(For Laboratory Examination-Minimum of Ten Experiments)

Minimum ten experiments from the following list are required to be conducted

- 1.Magnetization characteristics of DC shunt generator. Determination of critical field resistance and critical speed.
- 2. Load test on DC shunt generator. Determination of characteristics.
- 3. Brake test on DC shunt motor. Determination of performance curves.
- 4. Swinburne's test on DC shunts motor, Predetermination of efficiency.
- 5. Speed control of DC shunt motor (Armature control and Field control method).
- 6. Hopkinson's tests on DC shunt machines. Predetermination of efficiency.
- 7. OC and SC test on single phase transformer
- 8. Parallel operation of single phase transformers.
- 9. Sumner's test on single phase transformers.
- 10. Load test on DC long shunt compound generator. Determination of characteristics.
- 11. Load test on DC short shunt compound generator. Determination of characteristics.
- 12. Separation of losses in DC shunts motor.
- 13. Separation of losses of single phase transformer

CO /	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	12	12
CO1	2	1	2	3	1	2	3						3	2
CO2			2	3	2	3	1						3	2
CO3	2		1	2	3	1	2						3	2
CO4	2			3	2	1	3						3	2
CO5	3			1	2	1	3						3	2
CO6								3					1	3
CO7									3				2	3
CO8										3			2	3
CO9												3	1	3

Course Code			L	Τ	P	C
18MCBH03	CONSTITUTION OF I	NDIA	3	0	0	0
Pre-requisite		Semester		III		

Course Objectives:

Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes (CO):

Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT – I	Constitution Law	Hrs
Maning file Car		

Meaning of the Constitution Law

UNIT - IIConstitution of IndiaHrsUistorical Decenactive of the Constitution of IndiaSolicent features and characteristics of the

Historical Perspective of the Constitution of India. Salient features and characteristics of the Constitution of India.

UNIT – III Scheme of the fundamental rights Hrs

The scheme of the Fundamental Duties and its legal status. The Directive Principles of State Policy – Its importance and implementation. Federal structure and distribution of legislative and financial powers between the Union and the States.

UNIT – IV	Parliamentary Form	Hrs
	i ui iiuiitoittui y i oi iii	1110

Parliamentary Form of Government in India – The constitution powers and status of the President of India. Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India. Emergency Provisions: National Emergency, President Rule, Financial Emergency.

UNIT – V	Constitutional Scheme in India	Hrs
Local Self Government	t - Constitutional Scheme in India. Scheme of the Fundame	ental Right
to Equality. Scheme of	the Fundamental Right to certain Freedom under Article 19	9. Scope of
the Right to Life and Pe	ersonal Liberty under Article 21.	

Textbooks:

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Framing of Indian Constitution, Dr. S. N. Busi, Dr. B. R. Ambedkar 1st Edition, 2015

Reference Books:

- 1. Indian Constitution Law, M. P. Jain 7th Edn., Lexis Nexis, 2014.
- 2. Introduction to the Constitution of India, D.D. Basu, Lexis Nexis, 2015.

Course Code			L	Т	Р	C
20BSBH13	_	MATHEMATICS-IV (Common to EEE & ECE)	<u>г</u> 3	1 0	r 0	<u> </u>
Pre-requisite		Basic Equations, Differentiations & Integration Semester	3	U	IV	5
		Course Objectives:			1 V	
		at providing the student to acquire the knowledge on the calcul iables. The student develops the idea of using Residues & speci				s of
UNIT – I		Complex variable –Differentiation			9 Hrs	
Properties – C conjugate h	Cauo arm	omplex variable – Continuity – Differentiability – Analytic chy-Riemann equations in Cartesian and polar coordinate nonic functions – Milne–Thomson method- Conformal ma n - Fixed point – Cross ratio – Determination of bilinear tr	s- H ppi	Harn ng:	nonic Biline	and ear
UNIT – II		Complex variable –Integration			9 Hrs	
theorem – C Complex pov	auc] ver	Evaluation along a path and by indefinite integration – Ca hy's integral formula – Generalized integral formula- Liou series: Radius of convergence – Expansion in Taylor's ser series- Singular point – Isolated singular point – Pole of o singularity.	ivil ries	le's - M	theor aclau	em. rin's
UNIT – III		Residues			9 Hrs	
t.		residue by formula and by Laurent's series – Cauchy's Re	biu			11.
(a) In		Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(\sin\theta, \cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{-\theta} dx$				
(a) In UNIT – IV		Evaluation of integrals of the type $\frac{2\pi}{3}$				
UNIT – IV Special Fund	ipro	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(\sin\theta, \cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{-\theta x} dx$	e ^{imx}	f(x)	<i>dx</i> 9 Hrs impro	oper
UNIT – IV Special Fund	pro tior	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(\sin\theta, \cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{i\theta}$ Special functions-I as: Gamma and Beta Functions – their properties – Evalua is Solutions of ordinary differential equations (Power series)	e ^{imx}	f(x)	<i>dx</i> 9 Hrs impro	oper ius
UNIT – IV Special Fund integrals- S UNIT – IV Bessel functio	pro	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx(b) \int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{i\theta}$ Special functions-I hs: Gamma and Beta Functions – their properties – Evalua is Solutions of ordinary differential equations (Power series Method).	tion s an	f(x) n of nd F	dx 9 Hrs impro roben 9 Hi ynom	oper ius rs
UNIT – IV Special Fund integrals- S UNIT – IV Bessel functio	etior eries ns – pert	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{x}$ Special functions-I hs: Gamma and Beta Functions – their properties – Evalua is Solutions of ordinary differential equations (Power series Method). Special functions-II Properties – Recurrence relations – Orthogonality- Legenties ies – Rodrigue's formula – Recurrence relations – Orthogonality- Legenties		f(x) n of nd F pol	dx 9 Hrs impro roben 9 Hi ynom	oper ius rs
UNIT – IV Special Fund integrals- So UNIT – IV Bessel function Pro	etior eries ns – pert	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{i\theta}$ Special functions-I hs: Gamma and Beta Functions – their properties – Evalua is Solutions of ordinary differential equations (Power series Method). Special functions-II Properties – Recurrence relations – Orthogonality- Legenties ies – Rodrigue's formula – Recurrence relations – Orthogonality- Legenties		f(x) n of nd F pol	dx 9 Hrs impro roben 9 Hi ynom	oper ius rs
UNIT – IV Special Func integrals- So UNIT – IV Bessel function Pro	opro etior eries ns – pert On	Evaluation of integrals of the type per real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ (c) $\int_{-\infty}^{\infty} e^{x}$ Special functions-I hs: Gamma and Beta Functions – their properties – Evalua is Solutions of ordinary differential equations (Power series Method). Special functions-II Properties – Recurrence relations – Orthogonality- Legenties ies – Rodrigue's formula – Recurrence relations – Orthogonality- Legenties Course Outcomes: a successful completion of the course, students will be a	tion s an udre ona	f(x) n of nd F e pol ility	dx 9 Hrs impro roben 9 Hi ynom	oper ius rs

	CO4	Learn the utilization of beta and gamma functions and its relations
	CO5	Conclude the use of special function in evaluating definite integrals
		Textbooks:
1. Hig	gher Engi	neering Mathematics, B.S.Grewal, Khanna publishers.
	gineering arson Pul	Mathematics, Volume - III, E. Rukmangadachari & E. Keshava Reddy, plisher.
3. Ad	lvanced E	Engineering Mathematics, by Erwin Kreyszig, Wiley India.
		Reference Books:
1. Hi	gher Eng	ineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
2. Ad	lvanced E	Engineering Mathematics, by Alan Jeffrey, Elsevier.
3. Ad	vanced E	ngineering Mathematics, Peter V.O'Neil, CENGAGE publisher.
4. Ad	lvanced E	Engineering Mathematics by M.C. Potter, J.L. Goldberg, Edward
F.A	Aboufade	1
5. Ma	athematic	s III by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and
M.	V.S.S.N.	Prasad, S.Chand publications
		Online Learning Resources:
	4.	https://onlinecourses.nptel.ac.in/noc17_ma14/preview/ noc18ma12.
	5.	. <u>http://nptel.ac.in/courses/111105090/111107056</u> /117101056/17
		6. onlinelibrary.wiley.com

CO/ PO	PO1	PO2	PO3	РО 4	Р О5	PO 6	P O7	PO 8	PO9	PO 10	РО 11	PO 12	PSO 1	PSO2
CO1	2	3	3	3	-		-	-	-	-	-	-	3	2
CO2	2	3	3	3	-	-	-	-	-	-	-	-	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	2
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	2
AVG	2 6	3	2 8	3	-	-	-	-	-	-	-	-		

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code	DATA STRUCTURES AND	L	Т	Р	С
20ES0505	ALGORITHMS WITH PYTHON	3	0	0	3
Pre-requisite	Semester			IV	
Course Objecti	ves:				
	ned at offering fundamental concepts of :				
Data str	ructures and explains how to implement them.				
	ve and non primitive data structure.				
Basis for	or understanding various ways of representing data and its u	isage	e in	differe	ent
	ing applications.				
Course Outcom	nes (CO):				
After completion	of this course the student be able to :				
• Underst	tand the organization of several ADTs and the manipulation	۱.			ſ
Apply S	Searching, insertion, deletion, traversing of data stored in va	ariou	ıs da	ata	
structur	es.				
	lifferent data structures to solve a given problem				
	e the efficiency of using different data structures and choos	e the	e eff	ficient	data
	e for solving a given problem.				
	p new algorithms to solve various problems				
UNIT – I	Data Structures Basics			9Hrs	
structures–Static structures; Applic Why Study Array ListCreating a SliceTwo-Dim ArrayThe Matr Sorting: Selection sort. Searching: L	gy - data, information, data type; data structures - in storage and Dynamic Storage representations; Class cations of data Structures. Abstract Data Types. Arrays	sific The Arra ertir plen	eatic Arra y ng It nent e Ma	on of ay Stru The P tems . ing th atrix	data ucture ython List e 2-D
UNIT – II	Linked Lists			10Hrs	-
representation of	tes of linked list - singly linked list, doubly linked list and f linked list, operations of linked list; Traverse forw on into, deletion from linked lists; Multi lists; Applications nomials	ard/1	reve	erse o	rder,
UNIT – III	Stacks and Queues		1	10Hrs	
Staales Intraduce	tion, array and linked representations, implementation and	the		nligat	iona
	ction, array and linked representations, implementation and				
	cular and doubly ended queues - operations; Applications of				10115,
	puter Simulations, Solving a Maze	r qu	cues		
UNIT – IV				10Hrs	

Introduction, Properties, Binary tree - introduction, properties, array and linked representations; Tree traversals and their implementation; Expression trees; BST - definition and operations; AVL trees- definition and construction of AVL trees; Applications of binary trees, HEAP TREE, THREADED TREE, The 2-3 Tree --Searching --Insertions --Efficiency of the 2-3 Tree Case study: Morse Code

UNIT – V Graphs

9Hrs

Introduction, Properties, Graphs representations - adjacency matrix, adjacency list, set representation, Traversals - breadth first search and depth first search; Applications of graphs HASHING: Introduction, Different hash functions, Collision - collision avoidance, handling methods

Textbooks:

- 1. D. Samanta, "Class Data Structures", 2nd edition, Eastern Economic Prentice-hall Private limited Press, 2000.
- 2. Rance D.Necaise, "Data Structures and Algorithms Using python", 2016, Publication: Wiley

Reference Books:

- 1. Elis Horowitz and Sartaj, Sahni, "Fundamentals of Data Structures". Illustrated edition, Computer Science Press, 2006.
- 2. Mark Allen Weiss, "Algorithms, Data Structures and Problem solving with C++ illustrated", 2nd edition, Addison-Wesley Publishing Company 2002.
- 3. RG Dromey and Person, "How to Solve it by Computer ", 2nd edition, Impression Education, 1998.

PO CO	P 0 1	P O 2	РО 3	P O 4	РО 5	PO 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P SO 1	P SO 2
CO 1	3	2	2	3	3							3	3	2
CO 2	3	3	2	3	3							2	3	2
CO 3	3	3	2	3	3							3	3	2
CO 4	3	2	2	2	3							2	3	2
CO 5	3	2	2	2	3							3	3	2
AVG	3	2.4	2	2.6	3							2.6	3	2

Course Code		L	T	Р	C
20PC0209	POWER SYSTEM – I	3	0	0	3
Pre-requisite	Semester			IV	L
Course Objecti					
	e different types of power generating stations.				
• To examine A.	C. and D.C. distribution systems.				
	and compare overhead line insulators and Insulated cables.				
	e economic aspects of power generation and tariff methods				
	e transmission line parameters calculations				
• To understand	the concept of corona				
Course Outcom	nes (CO):				
At the end of this	course, students will demonstrate the ability to understand	the	con	cepts o	of
power systems.				1	
• Understand the	operation of conventional generating stations and renewab	ole s	ourc	es of	
electrical power.					
• Evaluate the po	wer tariff methods.				
• Determine the	electrical circuit parameters of transmission lines				
	layout of substation and underground cables and corona.				
• Understand AC	and DC Distribution systems.				
UNIT – I	Generation of Electric Power Conventional Sources			9Hrs	
Power Plant, N (Qualitative): Oc	Electric Power Conventional Sources (Qualitative): Hyuclear Power Plant and Gas Turbine Plant. Non-Contean Energy, Tidal Energy, Wave Energy, wind Energy, Fr	nver	ntion	al Sc	ources
	ation and energy conservation and storage	1		1011	
UNIT – II	Economics of Generation			10Hrs	
demand factor, lo	eneration: Introduction, definitions of connected load, and factor, diversity factor, Load duration curve, number and and peak load plants. Cost of electrical energy-fixed cost, comer.	nd s	ize o	of gen	erato
UNIT – III	Overhead Line Insulators & Insulated Cables		1	l0Hrs	
distribution over of insulators. Intr of cables, insulat	Insulators & Insulated Cables: Introduction, types of a string of suspension insulators, Methods of equalizing the coduction, insulation, insulating materials, Extra high volt ion resistance of a cable, Capacitance of a single core and ersus underground cables, types of cables.	he p age	oter cab	itial, to les, gr	esting ading
UNIT – IV	Inductance & Capacitance Calculations of	Τ	1	l0Hrs	
$\mathbf{U}_{111} = 1\mathbf{v}$	Transmission Lines		_	101115	
		<u> </u>		1	
unsymmetrical sp	Capacitance Calculations of Transmission Lines: capacitance of single phase and three phase lines with bacing, Composite conductors-transposition, bundled condu- ance. Corona: Introduction, disruptive critical voltage, c	h sy ucto	ymm rs, a	nd eff	l and ect o

inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and effect of earth on capacitance. Corona: Introduction, disruptive critical voltage, corona loss, Factors affecting corona loss and methods of reducing corona loss, Disadvantages of corona, interference between power and Communication lines.

A.C. Distribution: Introduction, AC distribution, Single phase, 3-phase, 3 phase 4 wire system, bus bar arrangement, Selection of site for substation. Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.

DC Distribution: Classification of Distribution Systems.- Comparison of DC vs. AC and Under-Ground vs. Over- Head Distribution Systems.- Requirements and Design features of Distribution Systems.- Voltage Drop Calculations (Numerical Problems) in D.C Distributors for the following cases: Radial D.C Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.

Textbooks:

 W.D.Stevenson –Elements of Power System Analysis, Fourth Edition, McGraw Hill, 1984.
 C.L. Wadhwa –Generation, Distribution and Utilization of Electrical Energy, Second Edition, New Age International, 2009.

Reference Books:

 C.L. Wadhwa –Electrical Power Systems, Fifth Edition, New Age International, 2009
 M.V. Deshpande –Elements of Electrical Power Station Design, Third Edition, Wheeler Pub. 1998

3. H.Cotton& H. Barber-The Transmission and Distribution of Electrical Energy, Third "V.K Mehta and Rohit Mehta", "Principles of Power Systems", S. Chand& Company Ltd, New Delhi, 2004.

CO/	PO	PO1	PO1		PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	1	2	3	2								3	3
CO2	2	3	2	3	3	3	3						3	2
CO3	1	3	2	1									3	3
CO4	1		2	1	3		3						3	3
CO5	2		3	1	2		2	1					3	3

CO-PO Mapping:

(20PC0403)	DIGITAL ELECTRONICS	3	1	0	3
Pre-requisite	Semes	ter		IV	
Course Objecti	ves:				
methods fTo acquir understan	le fundamental concepts used in the design of digital for the design of digital circuits e the basic knowledge of digital logic levels and applica d digital electronics circuits. re students to perform the analysis and design of varie	tion c	of kı	nowled	lge to
Course Outcon	nes (CO)·				
	essful completion of this course, the student able to:	Pos	rela	ted to	Cos
		PO1,P	O2 ,]	PO3,P	012
impleme	nt various K- maps , Design & analyze the ntation of NAND and NOR logic gates , various problems using logic gates.	РО	1,P(02,PO	3
subtracto	5	01,PO	2,PC)3,PO	4,PO
	flip flops, design different types of counters,	9 1,PO 2	2,PC)3,PO4	4, PO
	ogic families and apply it to solve real life	PO1,P	O2 ,1	PO3,P	012
UNIT – I	NUMBER SYSTEM			9Hrs	
numbers, Signed	umber system, Number base conversions, Binary Arithn I binary numbers, binary codes-excess 3 code, Be e-versa. Digital Logic gates& its realization using university	CD, (Gray	-	
UNIT – II	BOOLEAN ALGEBRA			10Hrs	
& Standard forms GATE LEVEL I The map method	GEBRA Basic definition, Basic theorems and properties, Boolea S-POS & SOP Simplification. MINIMIZATION I, four variable, K-map, Five variable map, Don't ca NOR Implementations ,Simplification of Boolean fun	reCon	ditio	ons, Ta	abular
Method.					

Combinational circuits, Analysis & Design procedure, Binary Adder-subtractor, Encoders & Decoder, Magnitude comparators,7-segment display, Multiplexers & Demultiplexers.

UNIT – IVSEQUNTIAL CIRCUITS:10HrsSequential Circuits, Latches Flips-Flops-SR, D, JK& T, Master-Slave JK flip-flop. Need for
Registers, Shift Registers-bidirectional & Universal .Counters- Ripple Counters, Synchronous

counters & other counters. Analysis & Design of clocked sequential circuits-mealy & Moore circuit, state diagram, state table, state reduction & state assignment.

UNIT – V LOGIC FAMILIES & MEMORIES	
------------------------------------	--

9Hrs

Memories: Types of memory-Random Access Memory (RAM), Read Only Memory (ROM), PLA, PAL & PROM. Logic families and their characteristics-RTL, TTL, ECL &CMOS circuits, FPGA

Textbooks:

1. M.Morris Mano & Michel D. Ciletti, "Digital Design", Pearson, 5th Edition.

2. "Switching theory & Logic Design" by A.P.Godse, Technical publications, Pune.

Reference Books:

1. Subratha Goshal, "Digital Electronics", Cambridge.

2. Zvi KOhavi and Nirah K.Jha, "Switching theory and Finite Automata Theory",Cambridge,3rd Edition.

3.A.Anand Kumar — Fundamentals of Digital Circuits^{II}, 4th Edition, PHI Learning PrivateLimited, 2016.

CO-PO Mapping:

COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	3	3	2	-	-							3	3	2	
CO2	3	3	3	-	-							2	2	2	
CO3	3	3	3	3	3							3	3	3	
CO4	3	2	3	3	2							3	3	3	
CO5	3	2	3	-	-							2	3	3	
SUM	15	13	14	6	5	0	0	0	0	0	0	13	14	13	
AVG	3	2.6	2.8	3	2.5	0	0	0	0	0	0	2.6	2.8	2.6	

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code		L	Τ	P	C
20PC0210	AC MACHINES	3	0	0	3
Pre-requisite	Semester			IV	

Course Objectives:

The students will be able to:

- Understand the fundamentals of AC machines, know equivalent circuit performance characteristics.
- Understand the methods of starting of Induction motors.
- Understand the methods of starting of Synchronous motors.
- Understand the parallel operation of Alternators.

Course Outcomes (CO):

At the end of this course, students will be able to:

• Understand the basics of ac machine windings, construction, principle of working, equivalent circuit of induction and synchronous machines.

• Analyze the phasor diagrams of induction motor.

- Apply the concepts to determine synchronous machine, parallel operation of alternators, synchronization and load division of synchronous generators
- Analyze the various methods of starting in synchronous motor.

• Analyze the various single phase induction motors.

UNIT – I	Fundamentals of AC machine windings	9Hrs
----------	-------------------------------------	------

Physical arrangement of windings in stator and cylindrical rotor; slots for windings; single turn coil - active portion and overhang; full-pitch coils, concentrated winding, distributed winding, winding axis, Air-gap MMF distribution with fixed current through winding - concentrated and distributed, Sinusoidally distributed winding, winding distribution factors.

UNIT – II	Induction Machines	10Hrs
01/11 11		101110

Operating principle, Construction, Types (squirrel cage and slip-ring), Starting and Maximum Torque, Equivalent circuit, Phasor Diagram, Torque-Slip Characteristics, power flow in induction machines, Losses and Efficiency, No load and blocked rotor test, Circle diagram, performance characteristics, Numerical problems. Methods of starting, braking and speed control for induction motors, crawling and cogging. Analysis of 3 phase induction motors with single phasing operation.

UNIT – III	Synchronous generators	10Hrs

Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation, EMF, MMF, ZPF and ASA methods. Operating characteristics of synchronous machines, Salient pole machine - two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators - synchronization and load division.

UNIT – IV	Synchronous motors	10Hrs
	Synem onous motors	101115

Principle of operation, methods of starting, Phasor diagram of synchronous motor, variation of current and power factor with excitation, V and inverted V curves, Hunting and use of damper bars, Synchronous condenser and power factor correction, Excitation and power circles.

UNIT – V	Single-phase induction motors	9Hrs			
Constructional fea	tures, double revolving field theory, equivalent circuit, d	etermination of			
parameters. Split-phase starting methods and its applications, capacitor start and run single					
phase motors, reluctance single phase motors, stepper motors, BLDC motors.					

Textbooks:

A. E. Fitzgerald and C. Kingsley, "Electric Machinery", McGraw Hill Education, 2013.
 P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

Reference Books:

1. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

2. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

3. A. S. Langsdorf, "Alternating current machines", McGraw Hill Education, 1984.

4. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.

Web Links:

1. https://onlinecourses.nptel.ac.in/noc21_ee13/preview

CO-PO Mapping:

CO/	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2		2	3	1	2	3						3	3
CO2				3	2	3	1						3	2
CO3	2		2	3	2		3						3	3
CO4	2			3	2	1	3						3	2
CO5	2	1	2	3	1	2							3	2

Course Code			L	Т	Р	C
20PC0211	AC MACHINES LAB		0	0	3	1.5
Pre-requisite		Semester			IV	
	Course Objectives:					
The students wi	ll be able to:					
• Analyze and a	pply load test, no-load and blocked-rotor tests f	for construct	ion	of c	ircle	
diagram an	d equivalent circuit determination in a sing	gle phase in	ndu	ctio	n mot	or.
• Predetermine	regulation of a three-phase alternator by synchro	onous imped	land	ce &	m.m.	f

• Predetermine the regulation of Alternator by Zero Power Factor method X_d and Xq determination of salient pole synchronous machine.

methods.

• Evaluate and analyze V and inverted V curves of 3 phase synchronous motor

Course Outcomes (CO):

On successful completion of this course the students will be able to

- Able to conduct and analyze load test on DC shunt generator.
- Able to understand and analyze magnetization characteristics of DC shunt generator.
- Able to understand and analyze speed control techniques and efficiency of DC machines.
- Able to understand to predetermine efficiency and regulation of single-phase Transformers.
- Able to determine X_d and X_q of a salient pole synchronous machine.
- Follow the ethical principles in implementation of experiments
- Do Experiments effectively as individual and as team member in a group.
- Communicate verbally and in written form, understanding about the experiments.
- Continue Updating the skills related to contemporary technology

List of Experiments (For Laboratory Examination-Minimum of Ten Experiments)

All the following ten experiments are required to be conducted

1. No-load & Blocked-rotor tests on Squirrel cage Induction motor.

- 2. Load test on three phase slip ring Induction motor.
- 3. Speed control of three phase induction motor
- 4. Rotor resistance starter for slip ring induction motor
- 5. Load test on single phase induction motor.
- 6. Determination of Equivalent circuit of a single phase induction motor.
- 7. Predetermination of Regulation of a three phase alternator by synchronous impedance &m.m.f methods.

8. Predetermination of Regulation of three-phase alternator by Z.P.F. method.

9. Determination of X_d and X_q of a salient pole synchronous machine by slip test.

10. V and inverted V curves of a 3-phase synchronous motor.

CO-PO Mapping:

CO/	PO	PO1	PO1	PO1	PSO	PSO								
PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1		2	3	3		3						3	2
CO2	2	1		2	3	3							3	2
CO3		1	2	2	3	3	3						3	2
CO4	1	1		2			3						3	2
CO5	3	2		2			3						3	2
CO6								3					1	2

CO7					3			2	2
CO8						3		2	2
CO9							3	1	2

AUTONOMOUS | ACCREDITED BY NAAC | RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

SRI VENKATESA PERUMAL

COLLEGE OF ENGINEERING & TECHNOLOGY

Course Code		L	Τ	Р	C
20PC0212	ELECTRICAL CIRCUITS & SIMULATION LAB	0	0	3	1.5
Pre-requisite	Semester			IV	.I
	Course Objectives:				
The course shou	ld enable the students to:				
• Design filter	s and analyze through digital simulation in electrical circuit	s.			
• The objectiv	e of Simulation laboratory is to impart hands on experience	ce in	n ve	rificat	ion o
circuit laws	s and theorems, measurement of circuit parameters,	st	udy	of o	circui
characteristi	cs using PSPICE and MATLAB.				
	Course Outcomes (CO):				
At the end of the	e course, a student will be able to:				
CO1: Evaluate t	wo port network parameters and the transient response for	ser	ies I	RL, RO	Ξ,
RLC elec	tric circuits.				
CO2: Design fil	ters through digital simulation in electrical circuits.				
	verify the laws and principles of electrical circuits, unders	tanc	l the	;	
relationsh	ips and differences between theory and practice;				
	gain practical experience related to electrical circuits,				
	and analyse electrical circuits using PSPICE				
	thical principles in implementation of experiments				
	ents effectively as individual and as team member in a group.				
	te verbally and in written form, understanding about the experim	ients	5.		
CO9: Continue O	pdating the skills related to contemporary technology List of Experiments				-
	(For Laboratory Examination-Minimum of Ten Experi	me	nte)		
All the	e following ten experiments are required to be conducted	me	ntsj		
	Low Pass And High Pass Filters Using MATLAB.				
e	Response of series and parallel RLC circuit By MATLAB				
	Response of series and parallel RL and RC Circuits By M.		AB		
	B simulation of R, RL, RC and RLC circuits with DC excit			•	
	B simulation of R, RL, RC and RLC circuits with AC excit				
	simulation of nodal analysis for DC circuits	aure	115.		
	imulation of maximum power transfer theorem for DC circ	uits			
	imulation of superposition theorem for DC circuits				
	imulation of AC circuits.				
	of three phase circuit representing generator transmission	line	and	load	
CO-PO Mappi	ng:				
· · · ·					

CO/ PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1
CO1	3	2			3							3	3
CO2	3	2			3							2	3
CO3	3	2			3							2	3

PSO 2

1

1

1

CO4	3	2		3					2	3	1
CO5	3	3		3					2	3	1
CO6						3				1	1
CO7							3			2	1
CO8								3		1	1
CO9									3	2	1

Course Code		L	Τ	Р	C
20ES0506	Data structures & Algorithms LAB	0	0	3	1.5
Pre-requisite	Semester	•		IV	
	Course Objectives:				
To des	ign programs using arrays, strings, pointers and structures.				
 To illu 	strate the use of Stacks and Queues				
 To app 	bly different operations on linked lists.				
• To den	nonstrate the Binary tree traversal techniques.				
• To des	ign searching and sorting techniques				
	Course Outcomes (CO):				
At the end of	this unit, the student will be able to				
• Demor	nstrate basic concepts of C programming language.				
• Develo	op C programs using functions, arrays, structures and pointe	ers.			
• Illustra	ate the concepts Stacks and Queues.				
	n operations on Linked lists.				
	various Binary tree traversal techniques.				
	op searching and sorting methods.				
 Follow 	the ethical principles in implementing the programs				
 Do exp 	periments effectively as an individual and as a team membe	r in	a gr	oup	
	unication verbally and in written from the understanding al			-	
experi	ments Continue updating their skills related to dynamic me	moi	y ut	ilizati	on,
sorting	g, searching				
	List of Experiments				
A 11 (1 C	(For Laboratory Examination-Minimum of Ten Experi			1	
			duct		
	on program to implement the following sorting methods			-	
given list of data	items (number of data items ≥ 5000) in ascending / desce	ndii	ng oi	rder	
	a. Selection sort b. Insertion sort				
	c. Bubble sort				
	d. Measure the performance of each of the above sorting techn	iane	and	comp	are
with their the	coretical time complexities	Ique	, and	comp	
	program to implement the following sorting methods to ar	rang	ge a	given	
	(number of data items ≥ 5000) in ascending / descending		-	C	
	a. Quick Sort				
	b. Merge sort				
	c. Measure the performance of each of the above sorting tech	nniq	ues a	nd cor	npare
	coretical time complexities	_			_
	program to implement the following search techniques on a	a giv	ven l	ist of	
-	ized in the form of array				
	near Search				
	ary search				
	alyze the performance of each searching technique and wri	te d	own	your	
observ	ations.				

4. Write a python program to perform the following operations on Singly Linked List: d. Create a singly linked list

e. Count the number of nodes in SLL

f. Insertion and deletion operations at Front at end and at a given position.

g. Search a given element (KEY) in SLL

5. Write a python program to perform the following operations on Doubly linked list h. Create a doubly linked list

i. Count the number of nodes in DLL

j. Insertion and Deletion operations at Front, at end and at a given position Traversal k. Search a given element (KEY) in DLL

6.Write a python program to implement the STACK using an array and linked list and perform following operations

a. PUSH an element on to a stack

b. POP an element from a stack

c. Demonstrate how stack can be used to check given string in Palindrome

d. Demonstrate Overflow and Underflow situations on Stack.

7. Write a python program to evaluate POSTFIX expression using STACK

8. Write a python program to implement Queue by using an array and linked list and following operations

a. Enqueue : add element to end of queue

b. Dequeue: remove element from front

queue of

c. isEmpty: check if queue is empty

d. IsFull: check if queue is full

9. Write a python program to implement following operations on Binary Search

Tree(BST)

a. Create a BST on N integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2

b. Traverse the BST in inorder, preorder and post order

c. Search a given element (KEY) in BST and report the appropriate message.

10.Write a python program for implementing the following graph traversal techniques

a. Depth first search traversal

b. Breadth first search traversal

c. Measure the time required to perform each traversal operation.

CO-PO Mapping

РО	PO 1	PO	PO 3	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO 10	PO	РО	PsO 1	PsO 2
СО	1	2	3	4	5	6	/	ð	9	10	11	12		
CO1	3												3	
CO2	2	2											3	
CO3		2	3											
CO4	2			2										
CO5				3										
CO6								3					1	
C07									2				2	
CO8										3			2	
CO9												3	1	
AVG	2.3	2	3	2.5	-	-	-	3	2	3	-	3	2	

SEMESTER – V

COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title					
No.	Code		С	L	Т	Р	Credits
1	20PC0213	Power Systems II	PC	3	-	-	3
2	20PC0214	Power Electronics	PC	3	-	-	3
3	20PC0215	Control Systems	PC	3	-	-	3
	20PE0201	Power Quality					
	20PE0202	Electrical Distribution					
4	20110202	Systems/MOOC	PE/JOE-I	3	_	_	3
	20PE0203	Programmable Logic		5			5
	201 L0203	Controllers	_				
	20PC0403	Signals and Systems					
5	XXXXXX	Open Elective - I	OE/JOE-I	3	-	-	3
6	20PC0216	Control Systems and		-	-	3	
0	20FC0210	simulation Lab	PC LAB				1.5
7	20PC0217	Power Electronics and		-	-	3	
/	20FC0217	simulation Lab	PC LAB				1.5
8	20SO0203	Soft Skills	SSC LAB	-	-	3	2
9	2010/0201	Internation	INTERSH	-	-	-	
9	20IN0201	Internship	IP				1.5
		Total		15	0	9	21.5

CATEGORY	
PC	12
OE	3
PE	3
INTERSHIP	1.5
SSC	2
TOTAL CREDITS	21.5

SEMESTER – VI

COURSE / BRANCH: B. TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title					
No.	Code		С	L	Т	Р	Credits
1	20PC0218	Electrical Measurements and Instrumentation	PC	3	-	-	3
2	20PC0219	Power System Analysis	PC	3	-	-	3
3	20PC0414	Micro Processors and Micro Controllers	PC	3	-	-	3
	20PE0204	Modern Control Theory					
	20PE0205	Industrial Automation and Control					
4	20PE0206	Power Electronics and Distributed Generation	PE-II	3	-	-	3
	20PE0207	Power System Operation and Control					
5	XXXXXX	Open Elective – II	OE/ JOE-II	3	-	-	3
6	20PC0220	Electrical Measurements and Instrumentation Laboratory	PC LAB	-	-	3	1.5
7	20PC0221	Computer Aided Design Laboratory	PC LAB	-	-	3	1.5
8	20PC0416	Micro Processors and Micro Controllers Lab	PC LAB	-	-	3	1.5
9	20SO0204	Skill Oriented Lab	SSC LAB	-	-	4	2
10	XXXXXX	Social Ethics		1	_	_	0
		Total		16	0	13	21.5

CATEGORY	
PC	13.5
OE	3
PE	3
SOC	2
TOTAL CREDITS	21.5

SEMESTER - VII

COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title					Credit
No.	Code		С	L	Т	Р	S
	20PE0208	Utilization of Electrical Energy					
1	20PE0209	Power Systems Stability	PE-III	3	-	-	3
	20PE0210	High Voltage Engineering					
	20PE0211	Power System Transients					
	20PE0212	Electrical Drives					
	20PE0213	HVDC Transmission					
2	20PE0214	Flexible Alternating Current Transmission Systems	PE-IV	3	-	-	3
	20PE0215	Advanced Power System Protection					
	20PE0216	Smart Grid Technology/ MOOC(Smart Grid- Basics to advanced technologies)			3 -	-	
3	20PE0217	Energy Audit and Management	PE-V	3			3
	20PE0218	Digital Image Processing					
	20PE0219	Electric and Hybrid Vehicles					
4	XXXXXX	Open Elective – III/Software Engineering	OE- III	3	-	-	3
5	XXXXXX	Open Elective – IV/Introduction to Micro Electro Mechanical Systems	OE-IV	3	-	-	3
6	20MC020 1	MOOC/Advanced Linear Continuous Control Systems	MOOC	3	-	-	3
8	20SO0205	Skill Oriented Lab	SSC LAB	-	-	4	2
9	20CV020	Comprehension Vivo Voce	CVV	-	-	-	1

1					
	Total	15	0	10	21

CATEGORY	
PE	12
OE	6
CVV	1
SOC	2
TOTAL	21
CREDITS	21

SEMESTER – VIII

COURSE / BRANCH: B.TECH-ELECTRICAL & ELECTRONICS ENGINEERING

S.	Course	Course Title					Credit
No.	Code		С	L	Т	Р	S
1	20PR0201	PROJECT	PRO	07	-	07	14

OPEN ELECTIVE-I

S. No.	Course Code	Course Title
1	20OE0301	Introduction to Operation Management
2	20OE0302	Product Design
3	20OE0303	Energy Management
4	20OE0401	Digital Electronics and Microprocessor
5	20OE0402	Introduction to Communication Systems
6	200E0403	Embedded Systems and its Applications
7	20OE0501	OOPS Using Java
8	20OE0502	Computer Organization
9	20OE0503	Design and Analysis of Algorithms

OPEN ELECTIVE-II

S. No.	Course Code	Course Title
1	20OE0304	Introduction to Vehicle Technology
2	20OE0305	Smart Materials

3	200E0306	Optimization Techniques
4	200E0404	Introduction to Networking
5	20OE0405	VLSI Design and its Applications
6	20OE0406	Introduction to IOT
7	20OE0504	Computer Networks
8	20OE0505	Object Oriented Analysis and Design
9	20OE0506	Database Management Systems

OPEN ELECTIVE-III

S. No.	Course Code	Course Title
1	20OE0307	Robotics
2	20OE0308	Nano Technology
3	200E0309	Green Energy Systems
4	20OE0407	Industrial Nano Technology
5	20OE0408	Image Processing
6	200E0409	Bio Medical Electronics
7	20OE0507	Operating System
8	20OE0508	Software Engineering
9	20OE0509	Human Computer Interaction

OPEN ELECTIVE-IV

S. No.	Course Code	Course Title
1	20OE0310	3D Printing Technology
2	20OE0311	Total Quality Management
3	20OE0312	Non-Destructive Testing
4	20OE0410	Digital Audio Engineering
5	20OE0411	Space Time Wireless Communications
6	20OE0412	Introduction to MEMS
7	20OE0510	Ethical Hacking
8	20OE0511	Machine Learning
9	20OE0512	Distributed Databases

OPEN ELECTIVES OFFERED BY DEPARTMENT TO OTHER BRANCH STUDENTS

OPEN ELECTIVE-I

S. No.	Course Code	Course Title
1	20OE0201	Renewable Energy Sources
2	20OE0202	Introduction to Power Electronics
3	200E0203	Electrical Power Generation

OPEN ELECTIVE-II

S. No.	Course Code	Course Title
1	200E0204	Introduction to High Voltage Engineering
2	20OE0205	Electrical Power Quality
3	20OE0206	Electrical Transmission System

OPEN ELECTIVE-III

S. No.	Course Code	Course Title
1	20OE0207	Introduction to Electrical Drives
2	20OE0208	Distribution Systems
3	20OE0209	Utilization and Traction Systems

OPEN ELECTIVE-IV

S. No.	Course Code	Course Title
1	20OE0210	Introduction to Power System Protection
2	20OE0211	Power System Analysis and Operation
3	20OE0212	Circuits and Synthesis

POWER SYSTEMS - II

Course Code	Category	Hours / Week			Credit s	May	Maximum M			
20PC0213	PROFESSIONA L	L	Т	Р	С	CI A	SEE	Total		
	CORE	3	-	-	3	40	60	100		
Contact Classes: 48	Tutorial Classes	s: 0	0 Practical Classes: 48				Total Classes: 48			

OBJECTIVES:

The objectives of the course are to make the student learn about

- Classification of transmission lines and representation by suitable equivalent circuits
- The different types of electromagnetic relays and microprocessor-based relays
- The protection of Generators, Transformers and feeders.
- The technical aspects involved in the operation of circuit breakers

UNIT-I	MODELLING	AND	PERFORMANCE	OF	Classes:9
0111-1	TRANSMISSION	LINES:			Classes.

Classification of transmission lines: Short, medium and long line and their model representations, nominal T, nominal π and A, B, C, D constants for symmetrical and asymmetrical networks, numerical problems, mathematical solutions to estimate regulation and efficiency of all types of lines, numerical problems; Long transmission line: Rigorous solution, evaluation of A, B, C, D constants, numerical problems, Ferranti effect, surge impedance and surge impedance loading of long lines.

UNIT - II MECHANICAL DESIGN OF TRANSMISSION LINES Cla

Classes:10

Sag and tension calculations: Sag and tension calculations with equal and unequal heights of towers, effect of wind and ice on weight of conductor, numerical problems, stringing chart and sag template and its applications.

Substation: Classification of substations, substation equipments, bus bar arrangement and bus-bar schemes.

UNIT - III | PROTECTIVE RELAYS

Classes:9

Principle of operation, basic requirements of relay, primary & backup protection, Classification of relay.

Electromagnetic relays:, construction of attracted armature, balanced beam, induction disc and induction cup relays; Relays classification: instantaneous, definite minimum time and inverse definite minimum time relays, direction relays- over current / under voltage relays/earth fault relay, differential relays and percentage differential relays, universal torque equation.

Distance relays: Impedance, reactance, mho relays, characteristics of distance relays.

Static relays: Overview of static relay, block diagram, operating principle and comparison, static relays versus electromagnetic relays.

UNIT - IV	PROTECTION OF GENERATORS, TRANSFORMERS	Classes:10
01111-11	AND FEEDERS	Classes.10

Introduction to generator faults-Protection of Generators Against Stator Faults, over current and over voltage protection, Rotor Faults protection.

Protection of Transformers: Buchholz protection, Over load protection, Differential protection, Biased differential protection.

Protection of feeders: Over load protection, Over current and Earth-Fault protection – current balance differential and voltage balance Merz-Price protection

UNIT - V CIRCUIT BREAKERS Classes:10

Circuit Breakers: Elementary Principles of Arc Interruption, Restriking Voltage and Recovery Voltage - Restriking Phenomenon, Average and Max. RRRV, Numerical Problems - Current Chopping and Resistance Switching - CB Ratings and Specifications: Types and Numerical Problems. – Auto Reclosures. Description and Operation of Following Types of Circuit Breakers: Minimum Oil Circuit Breakers, Air Blast Circuit Breakers, Vacuum and SF6 Circuit Breakers.

Text Books:

- 1. Electrical power systems, C.L.Wadhwa, New Age International (P) Limited, 6th Edition, 2010, Reprint 2014.
- 2. A Text Book on Power System Engineering, M.L.Soni, J.B.Gupta, U.S.Bhatnagar and A.Chakrabarti, Dhanpat Rai & Co. Pvt. Ltd., 1999.
- 3. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications, 2011.
- 4. Switchgear and Protection, Sunil S Rao, Khanna Publishers, 1992.

Reference Books:

- 1. Power system Analysis 4th edition, John J Grainger and William D Stevenson, JR, Mc Graw Hill Education, 2003, Reprint 2015.
- 2. Power System Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 2nd Edition, 2008, 23rd Reprint 2015.
- Electric Power Transmission System Engineering: Analysis and Design, TuranGonen, 2nd Edition, CRC Press, Taylor & Francis group, 2009, 1st Indian Reprint 2010

- 4. Transmission network Protection, Y.G. Paithankar, Taylor and Francis, 2009.
- 5. Power system protection and switch gear, BhuvaneshOza, TMH, 2010.

Course Outcome:

At the end of the course, a student will be able to:

CO1 analyze and model transmission line and can determine the performance of line.

CO2: study mechanical design of transmission line and grounding.

CO3: understand and analyze the concepts of different types of relay operations.

CO4: understand and analyze the concepts of protection systems of Generators, Transformers and Feeders.

CO5: understand and differentiate different types of circuit breakers and their applications.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO 1	3	2	2	3		1	1					1	2	3
CO 2	3	2	3	3		2	1					1	1	3
CO 3	2	1	1	1		1	1					1	2	2
CO 4	3	1	1	2		1	1					1	2	3
CO 5	3	1	1	2		1	1					1	3	2
AV G	2.7	1.5	1. 7	2.2		1. 2	1					1	2	2.6

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLO LAUTONOMOUS LACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.

POWER ELECTRONICS

Course Code	Category	Hou	irs / W	Veek	Credi ts	Maximum Marks					
	PROFESSION	L	T	P	С	CIA	SEE	Total			
20PC0214	AL CORE	3	-	-	3	40	60	100			
Contact Classes:48	Tutorial Classes: 0 Total Classes: 48										
OBJECTIVES:	OBJECTIVES:										
The course should	enable the students	s to:									
The objectives of t	he course are to make	e the st	udent	learn a	ıbout						
• the basic	power semiconduct	or sw	itching	g devi	ices and	their	princip	ples of			
operation.											
• the various	power conversion	metho	ods, co	ontroll	ing and	design	ing of	power			
converters.											
• the applic	ations of Power e	electror	nic co	onversi	ion to	domest	ic, ind	lustrial,			
	commercial and utilit							-			
-	ent used for DC to				C to Var	iable D	C, and	AC to			
	equency AC conversi			,			,				
							C	lasses:			
UNIT-I POWER SEMI CONDUCTOR DEVICES 10											
Semiconductor Por	wer Diodes, Classific	cation of	of Swi	itching	Devices	Based	on Fre	quency			
	ng Capacity-BJT – Po			-							
	on Controlled Rectifi										

- Static Characteristics - Turn On and Turn Off Methods- Dynamic Characteristics of SCR - Two Transistor Analogy - Triggering Circuits— Series and Parallel Connections of SCR's - Snubber Circuits.

UNIT - II	PHASE CONTROLLED CONVERTERS	Classes: 10
Phase Contr	rol Technique - Single Phase Line Commutated Converters - Mid	Point and
Bridge Cor	nections - Half Controlled Converters, Fully Controlled Conve	erters with

Resistive, RL Loads and RLE Load- Derivation of Average Load Voltage and Current -

Active and Reactive Power Inputs to the Converters without and with Free Wheeling Diode, Effect of Source Inductance – Numerical Problems. Three Phase Line Commutated Converters – Three Pulse and Six Pulse Converters – Mid Point and Bridge Connections - Average Load Voltage with R and RL Loads – Effect of Source Inductance–Dual Converters (Both Single Phase and Three Phase) - Waveforms – Numerical Problems.

UNIT III	CHOPPERS AND REGULATORS	Classes:	ĺ
UNII - III	CHOFFERS AND REGULATORS	0	l

Commutation Circuits – Time Ratio Control and Current Limit Control Strategies – Step Down and Step up Choppers Derivation of Load Voltage and Currents with R, RL and RLE Loads- Step Up Chopper – Load Voltage Expression– Problems. Study of Buck, Boost and Buck-Boost regulators.

UNIT IV	INVERTERS							
$\mathbf{U}\mathbf{N}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{-I}\mathbf{V}$	INVERIERS	9						
Inverters – S	Single Phase Inverter – Basic Series Inverter – Basic Parallel	Capacitor						

Inverters – Single Thase Inverter – Basic Series Inverter – Basic Taraner Capacitor Inverter Bridge Inverter – Waveforms – Simple Forced Commutation Circuits for Bridge Inverters – Single Phase Half and Full Bridge Inverters-Pulse Width Modulation Control-Harmonic Reduction Techniques-Voltage Control Techniques for Inverters – Numerical Problems, Three Phase VSI in 120^o And 180^o Modes of Conduction.

UNIT - V	AC VOLTAGE CONTROLLERS & CYCLO	Classes:
ONIT - V	CONVERTERS	10

AC Voltage Controllers – Single Phase Two SCR's in Anti Parallel – With R and RL Loads – Modes of Operation of TRIAC – TRIAC with R and RL Loads – Derivation of RMS Load Voltage, Current and Power Factor Wave Forms – Firing Circuits -Numerical Problems - Thyristor Controlled Reactors; Switched Capacitor Networks.

Cyclo Converters – Single Phase Mid Point Cycloconverters with Resistive and Inductive Load (Principle of Operation only) – Bridge Configuration of Single Phase Cycloconverter (Principle of Operation only) – Waveforms

Text Books:

- 1. Power Electronics, M. D. Singh and K. B. Khanchandani, Mc Graw Hill Education (India) Pvt. Ltd., 2nd Edition, 2007, 23rd Reprint 2015.
- 2. Power Electronics: Circuits, Devices and Applications, Muhammad H. Rashid, Pearson, 3rd Edition, 2014, 2nd Impression 2015.

Reference Books:

- 1. Power Electronics, K. R. Varmah, Chikku Abraham, CENGAGE Learning, 1st Edition, 2016.
- 2. Power Electronics, P. S. Bimbhra, Khanna Publishers, 2012.
- 3. Power Electronics: Devices, Circuits, and Industrial Applications, V. R. Moorthi, OXFORD University Press, 1st Edition, 2005, 12th Impression 2012.

Course Outcome:

After going through this course, the student acquires knowledge about:

- Basic operating principles of power semiconductor switching devices.
- the operation and analysis of power electronic converter circuits.
- the operation and analysis of choppers and regulator circuits.
- the operation and analysis of inverter circuits.
- the operation and analysis of AC voltage controllers, and cycloconverters and their control.

CO-PO MAPPING

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO12	PO12
CO 1	3	2	2	3		1	1					1	3	2
CO 2	3	2	3	3		2	1					1	3	3
CO 3	2	1	1	1		1	1					1	3	2
CO 4	3												3	3
CO 5	3												3	3
AV G	2.6	1.6	2	2.3		1.3	1					1	3	2.6

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLO

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.

CONTROL SYSTEMS

Course Code	Category	Hou	ırs / W	eek	Credi ts	Max	imum l	Marks	
	PROFESSION	L	Т	Р	С	CIA	SEE	Total	
20PC0215	AL CORE	3	-	-	3	40	60	100	
Contact Classes: 48	Tutorial Classo	es: 0	Prac 0	tical (Classes:	Total Classes: 48			
OD IE OTIVES.			Ů						

OBJECTIVES:

To make the students learn about:

- Merits and demerits of open loop and closed loop systems; the effects of feedback.
- The use of block diagram algebra and Mason's gain formula to find the effective transfer function between two nodes.
- Transient and steady state responses, time domain specifications.
- The concept of Root loci.
- Frequency domain specifications and Bode diagrams.
- The fundamental aspects of modern control Systems.

IINIT I	INTRODUCTION AND MODELING OF PHYSICAL	Classes:
UNIT-I	SYSTEMS	10

Open Loop and closed loop control systems and their differences- Examples of control systems- Classification of control systems, Feedback Characteristics, Effects of positive and negative feedback. Mathematical models – Differential equations of Translational and Rotational mechanical systems, and Electrical Systems, Block diagram reduction methods – Signal flow graph - Reduction using Mason's gain formula. Transfer Function of DC Servo motor - AC Servo motor - Synchro transmitter and Receiver.

	ITT	п	тп		DECI	ONG	E ANALYSIS					Classes:	
	11	- 11			KEƏI	UNS	E ANAL I SIS					10	
a.	1	1.	• •	1	<u> </u>	D		1 T	1	Ъ	т.	C	

Standard test signals -Step Response – Ramp and Impulse Response - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient

response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants - effects of proportional, derivative, integral and integral, proportional derivative, proportional integral and PID controllers.

UNIT - III	CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE	Classes: 9
conditional s The root lo	of stability – Necessary and sufficient conditions for stability - Stability - Routh's stability criterion — limitations of Routh's stability cus concept - Introduction, root locus concept, construction of termination of 'k' for specified damping ratio, relative stability -	lity. root loci-
adding poles	and zeros to G(s)H(s) on the root loci. FREQUENCY RESPONSE ANALYSIS	Classes:
Frequency d Analysis fre Analysis.	, Frequency domain specifications- Bode Diagrams-Determ omain specifications and transfer function from the Bode Diagram om Bode Plots. Polar Plots- Phase margin and Gain Margi on techniques – Lag, Lead, Lag-Lead Compensator design in	n-Stability n-Stability
UNIT - V	STATE SPACE ANALYSIS	Classes: 10
differential Solving the	E state, state variables and state model, derivation of state model equations. Transfer function models. Block diagrams. Diago Time invariant state Equations- State Transition Matrix and it's ponse through State Space models. The concepts of controlla 7.	nalization. Properties.
Text Books		
2. Control S	Control Engineering, Katsuhiko Ogata, PEARSON, 1 st Impression 2 Systems Engineering, I. J. Nagrath and M. Gopal, New Age In s, 5 th edition, 2007, Reprint 2012.	
Reference B	Books:	
Edition, 2 2. Control S 3. John J D'.	c Control Systems, Farid Golnaraghi and Benjamin. C. Kuo, W 010. ystems, Dhanesh N. Manik, CENGAGE Learning, 2012. Azzo and C. H. Houpis, "Linear Control System Analysis and Des I and Modern", McGraw - Hill Book Company, 1988.	
Course Out		
1. Under	eting the course, the student should be able to stand the concept of open and closed loop control systems, transf ek diagrams and signal flow graph techniques.	er function

- 2. Calculate time domain specifications.
- 3. Determine stability using RH criterion and Root locus.
- 4. Determine frequency response of control systems.

5. Analyze state space analysis, concept of controllability and observability

CO-PO MAPPING

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO 1
CO1	3	3	3	2									3	3
CO2	2	1	2	2									2	2
CO3	2	2	2	2									3	3
CO4	2	2	2	3									3	3
CO5	3	3	3	2									3	3
A V G	2.4	2.2	2.4	2.2										

POWER QUALITY

Course Co	de	Category	Ηοι	ırs / W	eek	Credi ts	Maxi	mum	Marks	
20PE0201	1	PROFESSIONAL	L	Т	Р	С	CI A	SE E	Total	
		ELECTIVE	3	-	-	3	40	60	100	
Contact Class 48	sses:	Tutorial Classes	: 0	Prac 0	tical (Classes:	Το	tal Cla 48	asses:	
OBJECTIVE	ES:			ł						
		enable the students to								
		terminology used to de		-						
II. The source	es of p	power quality disturbar	nces an	d powe	er trans	sients that	t occur	in pov	ver	
systems.										
		narmonics, harmonic ir	ndices,	Device	es for c	ontrolling	g harm	onic		
distortion.										
IV. The princi	iple of	f operation of DVR and	1 UPQ	С.						
UNIT-I I	INTR	ODUCTION						Cla 0	sses:1	
Introduction	of th	ne power quality (PC	2) pro	blem,	terms	used in	PQ:	Voltag	ge, sag,	
	-	rmonics, over voltag	•	• ·		•			-	
-		ew of power quality p	henom	enon, r	remedi	es to imp	orove p	ower o	quality,	
power quality		<u> </u>								
UNIT - II		NSIENTS, SHORT D		FION A	AND I	LONG			sses:1	
		ATION VARIATION						0		
		haracteristics of Elect	•	·				•		
-		cillatory Transients-Inte	-		-			-		
Under Voltage – Over Voltage–Outage. Sources of Different Power Quality										
	s- Prin	ciples of Regulating th	ne Volt	age- Co	onvent	tional Dev	vices fo	or Vol	tage	
Regulation.										

UNIT - III	FUNDAMENTALS OF HARMONICS & APPLIED HARMONICS	Classes:9
Power Syste Sources fro	Distortion, Voltage Versus Current Distortion, Harmonics Versus em Quality Under Non Sinusoidal Conditions, Harmonic Indices m Commercial Loads, Harmonic Sources from Industrial Loa Effects Of Harmonics, Harmonic Distortion Evaluations, P	s, Harmoni ds. Applie
	Harmonics, Devices for Controlling Harmonic Distortion.	incipies o
UNIT - IV	POWER QUALITY MONITORING	Classes:9
Locations- Power Qua	uality Benchmarking-Monitoring Considerations- Choosing Permanent Power Quality Monitoring Equipment-Historical Pe lity Measuring Instruments- Power Quality Measurement Equipme s- Assessment of Power Quality Measurement Data- Pow Standards.	ent-Types o
UNIT - V	POWER QUALITY ENHANCEMENT USING CUSTOM POWER DEVICES	Classes:1 0
(SSTS) Co	miter (SSCL)-Solid State Breaker (SSB) -Solid State Transfe ompensating Type: Dynamic Voltage Restorer (DVR)-Unifie nditioner (UPQC)-Principle of Operation Only.	
Text Books	:	
	Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Wayne Beaty, Mc Graw Hill Education (India) Pvt. Ltd., 3rd Editi	-
	quality, C. Sankaran, CRC Press, 2001.	
Reference H	Books:	
 J. Bo Power Multi 	erstanding Power quality problems – Voltage Sags and Interruption ollen IEEE Press Series on Power Engineering, WILEY, 2007. er quality – VAR Compensation in Power Systems, R. Sas akutla S. Sarma, CRC Press, 2009, First Indian Reprint 2013. lamentals of Electric Power Quality, Surya Santoso, Create Space,	try Vedan
Web Refere	ences:	
1. <u>https://w</u>	ww.researchgate.net	
2. https://w	ww.aar.faculty.asu.edu/classes	
3. https://w	ww.facstaff.bucknell.edu/	
	ww.electrical4u.com	
4. https://w		
-	ww.crectirupati.com	

1. https://www.jntubook.com/

2. https://www.freeengineeringbooks.com

Course Outcome:

At the end of the course, a student will be able to:

- Address power quality issues to ensure meeting of standards
- Apply the concepts of compensation for sags and swells using voltage regulating devices
- Gain a comprehensive understanding of harmonics and applied harmonics, demonstrating the ability to analyze, mitigate, and address harmonic distortions in electrical systems for improved power quality .
- Attain proficiency in power quality monitoring, showcasing the ability to analyze and assess electrical systems, identify power disturbances, and implement solutions to ensure reliable and efficient power delivery.
- Acquire expertise in power quality enhancement using custom devices, demonstrating the ability to design, implement, and optimize custom solutions to mitigate power quality issues, ensuring a more reliable and stable electrical system.

POs relate d to COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 1 0	PO 1 1	PO 1 2	PSO 1	PSO2
CO 1	3	2		3								1	2	3
CO 2	3	2	3	3								1	2	3
CO 3	3	2	3	3								1	3	3
CO 4	3	2	3	3								1	2	3
C0 5	3		3	3								1	3	3
AVG	3	1.6	2.4	3								1	2.4	3

CO-PO MAPPING

ELECTRICAL DISTRIBUTION SYSTEMS

Course (Code	Category	Hou	rs / W	eek	Credit s	Max	imum I	Marks
20PE02	202	PROFESSIONA L	L	Т	Р	С	CI A	SEE	Tota l
		ELECTIVE	3	-	-	3	40	60	100
Contact C 48	lasses:	Tutorial Classe	s:0		ctical sses: (Tot	al Class	ses: 48
OBJECTI									
The course	should	enable the students	:						
•		actors of Distribution	•						
		n the substations and				ms.			
-	-	pts of voltage drop ar	-						
To study th	e distrib	ution system protecti	ion and	d its c	oordii	nation.			
-		of compensation for	-		-				
To study th	e effect	of voltage control on	distri	bution	ı syste	em.			
UNIT-I	GENE	RAL CONCEPTS						Clas 0	sses:1
Introduction	n to dist	ribution systems – D	istribu	tion s	ysten	n losses –	Coinci	dence fa	actor –
Contributio	n facto	or loss factor – N	Jumeri	cal F	roble	ems – Lo	oad M	Iodellin	g and
Characteris	tics – R	elationship between	the lo	ad fa	ctor a	nd loss fa	ctor –	Classif	ication
and charact	eristics	of loads (Residential,	, comn	nercia	l, Agı	ricultural a	nd Ind	ustrial)	
UNIT - II	SUDG	ΓΑΤΙΟΝS						Clas	sses:1
UN11 - 11	3083	IATIONS						0	
Location o	f substa	ations: Rating of di	istribut	tion s	ubsta	tion – Se	rvice	area w	ith 'n'
primary fee	ders – E	Benefits and methods	of opt	imal l	ocatio	on of subst	tations.		
Distributio	n Feede	ers							
Design Cor	nsiderati	ons of distribution fe	eders:	Radi	al and	l loop type	es of p	rimary f	feeders
– Voltage l system.	evels –	Feeder loading – Ba	sic des	sign p	ractic	e of the se	econda	ry distri	bution
UNIT - III	SYST	TEM ANALYSIS						Clas	sses:9
-		oower–loss calculation y distributed loads a				-	-	-	

problems	- Three phase balanced primary lines.	
UNIT - IV	PROTECTION, COORDINATION & AUTOMATION	Classes:9
devices: F circuit bro Protection	s of distribution system protection –Time current characteristics rinciple of operation of fuses – Circuit Reclosures – Line section eakers, Modulated case circuit breakers, Earth leakage circuit schemes of parallel & Ringmain feeders.	onalizes and breakers –
co-ordinat	ed operation of protective devices – Residual Current Circ on: Block diagram approach of SCADA.	
UNIT -	COMPENSATION FOR POWER FACTOR	Classes:1
V	IMPROVEMENT	0
 shunt ar factor condetermine Voltage C 	ontrol: Equipment for voltage control – Effect of series capacitors	ed) – Power rocedure to
AVB/AV	R – Line drop compensation – Numerical problems.	
Text Boo	<s:< td=""><td></td></s:<>	
	lectric Power Distribution system, Engineering" – by Turan Goner Il Book Company.	n, McGraw–
Reference	Books:	
 Electric 4th edition 	al Distribution Systems by Dale R.Patrick and Stephen W.Fardo, G Power Distribution – by A.S. Pabla, Tata McGraw–hill Publishin h, 1997. al Power Distribution Systems by V.Kamaraju, Right Publishers	-
Course O	utcome:	
After the o	completion of the course the student should be able to:	
1. Ur	derstand various factors and characteristics of distribution system	
	derstand, analyse and design of various types of substations, feede ection of its location.	ers and
	alyse the power system by calculating the voltage drops and powe	r losses at
all	buses.	
4. Ur	buses. derstand and analyse the powers system protection, coordination a comation.	ind

CO-PO MAPPING

	PO1	PO	PO3	PO4	PO5	PO	PO7	PO	PO9	PO1	PO11	PO1	POS1	PSO2
		2				6		8		0		2		
CO 1	3	3	3	2								1	2	3
CO 2	3	3	2	2								1	3	3
CO 3	3	3	1	1								1	3	3
CO 4	3	3	3	2									2	3
CO 5	3	3	2	2									2	3
	3	3	2.2	1.8								1	2.4	3

PROGRAMABLE LOGIC CONTROLLER

Course Code	Category		lours Week		Credit s	Maximum Marks			
20PE0203	PROFESSIONA L	L	Т	Р	С	CI A	SEE	Tota l	
	ELECTIVE	3	-	-	3	40	60	100	
Contact Classes: 48	Tutorial Classes	s: 0	Practical Classes: 48			Total Classes: 48			

Course Objectives:

1.To explain the operation of relays, pushbuttons, limit switches, and other basic control devices using ladder diagrams, design basic motor control circuits.

2.Describe the hardware of a PLC, identifying the functions of the main components. 3.To explain the PLC programs to perform specified discrete sequential control operations.

4.Configure a PLC, including choosing appropriate addressing for I/O for a specified application

UNIT I	INTRODUCTION	Classes:1					
0111 - 1		0					
Programmable controller -need for PLC -modular PLC and fixed PLC -Blockdiagram							
of PLC –inpu	of PLC –input and output modules –power supply –types of PLC system.						
	HARDWARE MODULES	Classes:1					
	HAND WARE WODULES	0					

CPU –processor"s function –processor"s operating system –processor ports –interfacing PC to PLC –processor operating modes –PLC system memory and application memory –input modules –output modules –module selection –PLC internal operation and signal processing – input and output processing–timing consideration.

UNIT – III	PLC PROGRAMMING Classes:9							
Introduction to IEC 61131 -System functions -sequence control -ladder logic -								
programming	programming sequences -limitation of ladder programming -logic instruction sets -							
standard PLC	functions -special functionrelays -data handling instructions	-arithmetic						
instructions -	instructions –data manipulation –program subroutines –programming examples							
UNIT – IV	INTERFACES IN DCS	Classes:9						

PLC communication ports –serial communications –RS232 –standard requirements – communication between several PLCs –PLC field bus -ManufacturingAutomation

Protocol (MAP) –Technical Office Protocol (TOP) -Distributed controlsystem (DCS) – building blocks –descriptions and functions of field-controlled units –operator stations – data highways –redundancy concepts –DCS system integration with PLC and computers –communication in DCS.

UNIT – V PLC MAINTENANCE AND CASE STUDIES

Classes:1

PLC maintenance –internal PLC faults –faults external to PLC –programmed error – watch dogs –safety –hardware safety circuits –troubleshooting. Case Studies: PLC as robot controller and FMS –

PLC to factory automation -PLC in process control

Text Books:

1) Gary Dunning, "Introduction to Programmable Logic Controllers", Thomson, 2nd Edition

2) John R. Hackworth, Frederick D., Hackworth Jr., "Programmable Logic Controllers Programming Methods and Applications"

3) John W. Webb, Ronald A. Reis, "Programmable Logic Controllers: Principles and Application", 5th edition.

Reference Books:

1.Frank D. Petruzella, "Programmable Logic Controllers", McGraw-Hill Companies, 3rdEdition, March 2013.

2. Lukcas M.P., "Distributed Control Systems", Van Nostrand Reinhold Co., New York, 1986

3. Ian G.Warnock, "Programmable Controllers Operation and Application", Prentice Hall International, UK, 1992.

4. John W. Webb and Ronald A.Reis, "Programmable Logic Controllers – Principles and Applications", Prentice Hall Inc., New Jersey, 3rdEdition, 1995.

5. Krishnakant, "Computer Based Industrial Control", Prentice Hall of India, 1997.

6. https://docshare.tips/plc-syllabus-docx_588a4d16b6d87fcb698b4c8b.html

Course Outcome:

After successful completion of this course, the students should be able to

1.Explain and use relays, pushbuttons, limit switches, and other basic control devices for automation.

2.Describe the hardware and architecture of PLCs and also identify the analogy of relay logic components.

3. Write PLC programes using ladder diagrams for complex applications.

4. Develop proficiency in designing and implementing interfaces in Distributed Control Systems (DCS) for Programmable Logic Controller (PLC) systems

5. Attain mastery in PLC maintenance and troubleshooting through real-world case studies, showcasing the ability to diagnose, repair, and optimize Programmable Logic Controller (PLC) systems.

CO-PO MAPPING

Pos related to Cos	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1			1					1	1	2
CO2	3	1	1	1			1					1	2	2
CO3	3	2	2	2	3							1	2	2
CO4	3	1	1	1								1	2	3
CO5	3	2	1	1	3							1	1	2
AV G	3	1.4	1. 4	1.2	3		1					1	1.6	2.2

SIGNALS AND SYSTEMS

Course Code	Category		lours Week		Credit s	Maximum Marks		
20PC0403	PROFESSIONA L	L	Т	Р	С	CI A	SEE	Tota l
	ELECTIVE	3	-	-	3	40	60	100
Contact Classes: 48	Tutorial Classes	Practical Classes: 48			Total Classes: 48			

OBJECTIVES:

- Analyze the discrete time signals and system using different transform domain techniques.
- Design and implement LTI filters for filtering different real world signals.
- Develop different signal processing applications using DSP processor.
- To study about signals and systems.
- To understand the stability of systems through the concept of ROC.

UNIT –	т	INT	ρηγ	DUCTION						Clas	ses:1
01111 -	1		NUL							0	
T 1	. •	. <u>a</u> :	1	10	α.	1	1		1	110	4.

Introduction to Signals and Systems Signals and systems as seen in everyday life, and in various branches of engineering and science. Continuous time signals (CT signals)-Discrete time signals (DT signals) – Step, Ramp, Pulse, Impulse, Exponential - classification of CT and DT signals – periodic and aperiodic signals, random signals, deterministic signals, Energy ,Power signals - CT systems and DT systems.

Classification of systems System properties: linearity: additivity and homogeneity, shiftinvariance, causality, stability

UNIT – II	BEHAVIOR OF CONTINUOUS AND DISCRETE-	Classes:1
ONII - II	TIME SIGNALS	0

Behavior of continuous and Discrete-time LTI systems Differential Equation-Block diagram representation-impulse response, convolution integrals-Fourier and Laplace transforms in Analysis. Impulse response and step response, convolution, input-output behavior with a periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems.

UNIT – III	CONTINUOUS & DISCRETE FOURIER	Classes:9	
------------	--	-----------	--

	TRANSFORMS							
Continuous &	Discrete Fourier Transforms: Fourier series representation	of periodic						
signals, Wave	signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform,							
Properties & Signal representation. The Discrete-Time Fourier Transform (DTFT) and								
the Discrete F	Fourier Transform (DFT). Parseval's Theorem.							
UNIT – IV	LAPLACE AND Z- TRANSFORMS	Classes:9						
Laplace and	Z- Transforms Review of the Laplace Transform for conti	nuous time						
signals and sy	signals and systems, system functions, poles and zeros of system functions and signals.							
Reviewof the	z-Transform for discretetime signals and systems, system func	tions, poles						
and zeros of s	ystems and sequences, z-domain analysis							
UNIT – V	SAMPLING AND RECONSTRUCTION	Classes:1 0						
Sampling and	Reconstruction The Sampling Theorem and its implications. S	pectra of						
sampled signa	als. Reconstruction: ideal interpolator, zero-order hold, first-ord	er hold.						
Aliasing and	its effects. Relation between continuous and discrete time system	ms						
Text Books:								
1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India, 1997.								
2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and applications", Pearson, 2006.								

3. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.

4. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.

Reference Books:

1. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009. 6. 2.M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007

Course Outcome:

After successful completion of this course, the students should be able to

- Have basic knowledge on signals and systems (both continuous time and discrete time) and their properties.
- Able to understand the behaviour of continuous and discrete time LTI systems, Fourier Transform and Laplace Transform
- Able to Represent continuous and discrete systems in time and frequency domain using different transforms and their properties
- Apply the Laplace transform and Z- transform for analyze of continuous-time and discrete-time signals and systems.
- Able to understand the sampling theorem and its implications

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
							7							
CO 1	3	2	1	2	2	2	-	-	-	-	-	2	2	1
CO 2	3	3	2	2	1	2	-	-	-	-	2	3	2	2
CO 3	3	3	2	3	2	2	-	-	-	3	2	3	2	2
CO 4	3	2	2	2	2	2	2	-	-	3	-	3	2	2
CO 5	3	3	3	2	2	1	3	-	-	-	2	3	2	2
	3	2.6	2	2.	1.8	1.8	2.5	-	-	3	2	2.8	2	1.8
				2										-70

CONTROL SYSTEMS AND SIMULATION LAB

Course Code	Category Hour		rs / W	'eek	Credi t	Maximum Marks			
20PC0216	PROFESSIONA L	L	Т	Р	С	CI A	SE E	Tota l	
	CORE	-	-	3	1.5	40	60	100	
Contact Classes: 0	Tutorial Classes	: 0	Practical Classes: 48			Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

- I. Understand mathematical models of electrical and mechanical systems.
- II. Analysis of control system stability using digital simulation.
- III. Demonstrate the time domain and frequency domain analysis for linear time invariant systems.
- IV. Apply programmable logic controllers to demonstrate industrial controls in the laboratory.

LIST OF EXPERIMENTS

Expt. 1 TIME RESPONSE OF SECOND ORDER SYSTEM

To obtain the time response of a given second order system with time domain specifications.

Expt. 2 TRANSFER FUNCTION OF DC MOTOR

Determine the transfer function, time response of DC Motor and verification using digital simulation.

Expt. 3 DC AND AC SERVO MOTOR

Study DC and AC servomotor and plot its torque speed characteristics

Expt. 4 EFFECT OF VARIOUS CONTROLLERS ON SECOND ORDER SYSTEM

Study the effect of P, PD, PI and PID controller on closed loop second order systems.

Expt. 5 | COMPENSATOR

Study Lead-Lag compensator and obtain its magnitude, phase plots.

Expt. 6	TEMPERATURE CONTROLLER							
Study the	e performance of PID controller used to control the temperature of an oven.							
Expt. 7	DESIGN AND VERIFICATION OF OP-AMP BASED PID CONTROLLER							
Impleme	ntation of PID controller using Op-Amps and verification using MATLAB.							
Expt. 8	STABILITY ANALYSIS USING DIGITAL SIMULATION							
•	analysis using root locus, Bode plot, Polar, Nyquist criterions of linear time system by digital simulation.							
Expt. 9	STATE SPACE MODEL USING DIGITAL SIMULATION							
Verification of state space model for transfer function and transfer function from state space modelusing digital simulation								
Expt. 10	LADDER DIAGRAMS USING PLC							
Input output connection, simple programming, ladder diagrams, uploading, running the program and debugging in Programmable logic controller.								
Expt. 11	TRUTH TABLES USING PLC							
•	d verification of truth tables of logic gates, simple Boolean expressions and							
	on to speed control of DC motor using Programmable logic controller.							
Expt. 12	IMPLEMENTATION OF DIRECT ONLINE STARTER USING PLC							
Impleme	ntation of direct online starter using Programmable logic controller.							
Expt. 13	BLINKING LIGHTS USING PLC							
Impleme	ntation of blinking lights with Programmable logic controller.							
Expt. 14	SPEED CONTROL OF DC MOTOR USING PLC							
Starting a	and speed control of DC motor using Programmable logic controller.							
Expt. 15	LINEAR SYSTEM ANALYSIS							
Linear Sy	/stem Analysis (Time Domain Analysis, Error Analysis) Using MATLAB.							
Reference	e Books:							
Editio	Edition, 2007.							
	ata, "Modern Control Engineering", Prentice Hall, 4 th Edition, 2003.							
•	3. Benjamin Kuo, "Automatic Control Systems", PHI, 7 th Edition, 1987.							
	SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:							

SOFTWARE:MATLABSoftware**HARDWARE:**Desktop Computers (04 nos)

Course Outcome:

At the end of the course, a student will be able to:

- 1. Understand mathematical models of electrical and mechanical systems.
- 2. Analysis of control system stability using digital simulation.
- 3. understand the performance of basic control system components such as D.C. servo motors, A.C. Servo motors, stepper motor.
- 4. To understand time and frequency responses of control system with and without controllers and compensators.
- 5. Acquire hands-on proficiency in Programmable Logic Controller (PLC) programming and troubleshooting.
- 6. Follow the ethical principles in implementation of experiments
- 7. Do Experiments effectively as individual and as team member in a group.
- 8. Communicate verbally and in written form, understanding about the experiments.
- 9. Continue Updating the skills related to contemporary technology

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	2	1				3	1		1	2	2
CO2	3	2	2	2	3				3	1		1	2	1
CO3	3	1	1	2	1				3	1		1	2	1
CO4	3	1	2	2	2				3	1		1	2	2
CO5	3	2	2	2	1				3	1		1	1	1
CO6								3						
CO7									3					
CO8										3				
CO9				_								3		
AV G	3	1.6	1.8	2	1.6			3	3	1.3		1.3	1.8	1.4

CO-PO MAPPING

POWER ELECTRONICS AND SIMULATION LABORATORY

Course Code	Category	Ηοι	urs / Week		Credits	N	Maximum Marks		
20000217	PROFESSIONAL	L	Т	Р	С	CIA	SEE	Total	
20PC0217	CORE	-	-	3	1.5	40	60	100	
Contact Classes: 0	Tutorial Classes: 0		Practical Classes: 48			Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

- I. Examine the characteristics of various devices and application of firing circuits used in power electronics.
- II. Outline the performance characteristics of AC voltage regulators, choppers, inverters, rectifiers and cycloconverters.
- III. Demonstrate the working principle of various power electronic devices and circuits using simulation.
- IV. Design the circuit of switched mode power supplies through simulation.

LIST OF EXPERIMENTS

Expt. 1 SCR, MOSFET AND IGBT

Study the characteristics of SCR, MOSFET and IGBT.

Expt. 2GATE FIRING CIRCUITS

Gate firing circuits of SCR.

Expt. 3HALF CONTROLLED CONVERTER

Single phase half controlled converter with R and RL loads.

Expt. 4 FORCED COMMUTATION CIRCUITS

Forced commutation circuits (Class A, Class B, Class C, Class D and Class E).

Expt. 5 FULLY CONTROLLED BRIDGE CONVERTER

Single phase fully controlled bridge converter with R and RL loads.

Expt. 6 SERIES INVERTER

Single phase series inverter with different loads.

Expt. 7 PARALLEL INVERTER

Single phase parallel inverter with different loads.

Expt. 8 VOLTAGE CONTROLLER

Single phase AC voltage controller with R and RL loads.

Expt. 9 DUAL CONVERTER

Single phase dual converter with R and RL loads.

Expt. 10 CYCLOCONVERTER

Single phase cycloconverters with R and RL loads.

Expt. 11 THREE PHASE CONVERTERS

Three phase half converter with R and RL loads.

Expt. 12 MOSFET BASED CHOPPERS

Operation of step down chopper using MOSFET.

Expt. 13 SIMULATION OF THREE PHASE FULL CONVERTER AND PWM INVERTER

Simulation of three phase full converter and PWM inverter with R and RL loads by using MATLAB.

Expt. 14 | SIMULATION OF BUCK – BOOST CHOPPER

Simulation of boost, buck, buck boost converter with R and RL loads by using MATLAB.

Reference Books:

- 1. M H Rashid, "Power Electronics, Circuits, Devices and Applications", Pearson, 3rd Edition, 2001.
- 2. M D Singh, K B Kanchandhani, "Power Electronics", Tata McGraw Hill Publishing Company, 7th Edition, 2007.
- 3. Dr. P S Bimbhra, "Power Electronics", Khanna Publishers, 5th Edition, 2012.

Web References:

- 1. https://www.ee.iitkgp.ac.in
- 2. https://www.citchennai.edu.in
- 3. https://www.crectirupati.com

Course Outcome:

At the end of the course, a student will be able to:

- 1. Test the turn on -turn off characteristics of various power electronic devices.
- 2. Test and analyze firing circuits for SCRs
- 3. Test different types of voltage controllers, converters and Inverters with R and RL loads
- 4. GYR
- 5. FJT
- 6. Follow the ethical principles in implementation of experiments
- 7. Do Experiments effectively as individual and as team member in a group.
- 8. Communicate verbally and in written form, understanding about the experiments.
- 9. Continue Updating the skills related to contemporary technology

	PO 1	PO2	РО 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1				3	1		1	2	1
CO2	3	2	2	2	3				3	1		1	2	1
CO3	3	1	1	2	1				3	1		1	2	1
CO4	3	1	2	2	2				3	1		1		
CO5	3	2	2	2	1				3	1		1		
CO6								3						
CO7									3					
CO8										3				
CO9												3		
AVG	3	1.6	1.8	2	1.6			3	3	1.3		1.3	2	1

CO-PO MAPPING

SEMESTER VI

ELECTRICAL MEASUREMENTS AND INSTRUMENTATION

Course Code	Category	Hours / Week			Credits	Maximum Mark		
	PROFESSIONA	L	Т	Р	C	CI	SE	Total
20PC0218	L	L	1			Α	E	I Utal
	CORE	3	-	-	3	40	60	100
Contact	Tutorial Classe	с• Л	Pra	ctical	Classes:	Total Classes: 48		
Classes:48		s: 0 (1 Utal Classes, 40		

OBJECTIVES:

The course should enable the students to:

I. Demonstrate the principle, working of electrical measurement instruments.

II. Illustrate the principles of energy measurement in electrical loads.

III. Outline the use of cathode ray oscilloscope.

IV. Evaluate various transducers for electrical measurements.

IINIT I	INTRODUCTION	TO	ANALOG	MEASURING	
UNIT - I	INSTRUMENTS				

Classes:10

Classification – Ammeters and Voltmeters – PMMC, Dynamometer, Moving Iron Type Instruments Single Phase Dynamometer Wattmeter Double Element and Three Element Dynamometer Wattmeter. Single Phase Induction Type Energy Meter . Three Phase Energy Meter. (Principle and working only)

UNIT - II	INTRODUCTION	ТО	DIGITAL	MEASURING	Classes:10
01111-11	INSTRUMENTS				Classes.10

Current Transformers and Potential Transformers Ratio and Phase Angle Errors. Potentiometers: Principle and Operation of D.C. Crompton's Potentiometer

Introduction to digital Measurements Digital Voltmeters - Successive Approximation, Ramp and Integrating Type-Digital Frequency Meter-Digital Multi meter-Digital Tachometer

UNIT -III OSCILLOSCOPES AND BRIDGES

Classes: 9

Oscilloscopes: CRO, CRT features, derivation of deflection sensitivity Measurement of amplitude, frequency and phase (Lissajous method).

DC Bridges: Wheatstone bridge, Wein Bridge Kelvin Bridge, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance-SchearingBridge .Measurement of low medium high resistance methods

	RODUCTION TO TRANSDUCERS	Classes:10
Definition of Ti	ansducers. Principle of Operation of Resistive, 1	Inductive, Capacitive
Transducers, LV	DT, Strain Gauge and Its Principle of Opera	ation, Gauge Factor,
Thermistors, The	ermocouples, piezoelectric Transducers, Photovolta	ic, Photo Conductive
Cells, Photo Dio	les	
Measurement of	Displacement, Velocity, Angular Velocity, Acceler	ration, Force, Torque,
Temperature, Pre	essure, Flow, Liquid level.(any two methods)	
	USTRIAL ENERGY MEASUREMENT THODS	Classes: 9
Static /micropro	cessor based Energy meter, multi function meter	rs, Industrial energy
	thods-low voltage high current, high voltage high	
Theft of energy	detection -Energy consumption when voltage coil	reversed, current coil
reversed. Energy	consumption when CT ratio changes.	
Text Books:		
1. A K Sawhney	y, "Electrical and Electronic measurement and instr	ruments", DhanpatRai
and Sons Pub	lications.	-
2 E W Golding	$= 1 \mathbf{E} \mathbf{O} \mathbf{W} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	againing instruments?
2. L w Golding	and F C Widdis, "Electrical measurements and me	easuring mistruments
•	shing. 5 th Edition.	easuring instruments
wheeler publi	-	C
wheeler publi 3. J.B. Gupta "A	shing. 5 th Edition.	C
wheeler publi 3. J.B. Gupta "A	shing. 5 th Edition. A Course in Electrical and Electronic Measurements ad Son's, 14 th Edition	C
wheeler publi 3. J.B. Gupta "A SK Kataria an Reference Book	shing. 5 th Edition. A Course in Electrical and Electronic Measurements ad Son's, 14 th Edition	s & Instrumentation"
 wheeler public 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murth 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements ad Son's, 14 th Edition s:	s & Instrumentation"
 wheeler public 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall	s & Instrumentation" of India, 2 nd Edition,
 wheeler public 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea	s & Instrumentation" of India, 2 nd Edition,
 wheeler publi 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea	s & Instrumentation ²⁷ of India, 2 nd Edition, rson/Prentice Hall of
 wheeler publi 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Editio	s & Instrumentation ²⁷ of India, 2 nd Edition, rson/Prentice Hall of
 wheeler public 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edition 4. H S Kalsi, "E Course Outcom 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Editio	s & Instrumentation" of India, 2 nd Edition, rson/Prentice Hall of
 wheeler publi 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 4. H S Kalsi, "E Course Outcom At the end of the 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Edition es:	s & Instrumentation ⁷⁵ of India, 2 nd Edition, rson/Prentice Hall of on, 1 st Edition 1995.
 wheeler publi 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 4. H S Kalsi, "E Course Outcom At the end of the 1. Explain th 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Editic es: course a student will be able to:	s & Instrumentation ⁷⁵ of India, 2 nd Edition, rson/Prentice Hall of on, 1 st Edition 1995.
 wheeler public 3. J.B. Gupta "A SK Kataria an Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 4. H S Kalsi, "E Course Outcom At the end of the 1. Explain th 2. Discuss v 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Edition es: course a student will be able to: ne working of various analog measuring instruments	s & Instrumentation" of India, 2 nd Edition, rson/Prentice Hall of on, 1 st Edition 1995. S.
 wheeler public 3. J.B. Gupta "A SK Kataria and Reference Book 1. Buckingham 2. D V S Murthy 2009. 3. A S Morris, " India, 2nd Edit 4. H S Kalsi, "E Course Outcom At the end of the 1. Explain th 2. Discuss v 3. Explain C 	shing. 5 th Edition. A Course in Electrical and Electronic Measurements and Son's, 14 th Edition s: and Price, "Electrical measurements", Prentice Hall y, "Transducers and Instrumentation", Prentice Hall Principles of measurement of instrumentation", Pea tion, 1994. lectronic Instrumentation", Tata McGrawHill Editic es: course a student will be able to: ne working of various analog measuring instruments arious errors in measuring digital instruments.	s & Instrumentation" of India, 2 nd Edition, rson/Prentice Hall of on, 1 st Edition 1995. S.

CO-PO MAPPING

	PO1	PO2	РО 3	PO4	PO5	PO 6	PO7	PO8	РО 9	PO10	PO1 1	PO12	PSO1	PSO2
C01	3	1		1								1	2	1
CO2	3	2	1	2								1	2	1
CO3	3	1	1	1								1	2	1
CO4	3											1	2	1
C05	3	2	2	2								1	2	1
AV G	3	1.2	0.8	1.2								1	2	1

POWER SYSTEM ANALYSIS

Course Code	Category	Ho	urs / Wo	eek	Credi ts	Max	Maximum Marl		
	PROFESSIONA	L	Т	Р	С	CIA	SEE	Total	
20PC0219	L CORE	3	-	-	3	40	60	100	
Contact Classes: 48	Tutorial Classes: 0		Practi 0	cal C	lasses:	Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

- I. Illustrate the formation of [Z] bus of a power system network.
- II. Compute power flow studies by various numerical methods.
- III. Discuss the symmetrical component theory, sequence networks and short circuit calculations.
- IV. Analyze power system for steady state stability
- V. Analyze power system for Transient stability and suggest methods to improve.

UNIT - I

POWER SYSTEM NETWORK MATRICES

Classes: 10

Graph Theory: Fundamental Concepts and Definition, Development of bus incidence matrices.

Network Matrices: Formation of Y bus by singular transformation and direct inspection methods, numerical problems; Formation of Z Bus: Partial network, algorithm for the modification of Z bus matrix for addition of element from a new bus to reference bus, addition of element from a new bus to an old bus, addition of element between an old bus to reference bus and addition of element between two old busses (Derivations and Numerical Problems), modification of Z bus for the changes in network elements(Numerical Problems).

UNIT - II	POWER FLOW STUDIES AND LOAD	Classes: 10
	FLOWS	

Load flows studies: Necessity of power flow studies, data for power flow studies, derivation of static load flow equations; Load flow solutions using Gauss Seidel method: Acceleration factor, load flow solution with and without PV buses, algorithm and flowchart; Numerical load flow solution for simple power systems (Max. 3 buses): Determination of bus voltages, injected active and reactive powers (Sample one iteration only) and finding line flows / losses for the given bus voltages; Newton Raphson method in rectangular and polar coordinates form: Load flow solution with

or without PV busses derivation of Jacobian elements, algorithm and flowchart, decoupled and fast decoupled methods, comparison of different methods, DC loads flow.

UNIT - III SHORT CIRCUIT ANALYSIS PER UNIT SYSTEM OF REPRESENTATION

Classes: 10

Per unit system: Equivalent reactance network of a three phase power system, numerical problems; Symmetrical fault analysis: Short circuit current and MVA calculations, fault levels, application of series reactors, numerical problems; Symmetrical component theory: Symmetrical component transformation, positive, negative and zero sequence components, voltages, currents and impedances.

Sequence networks: Positive, negative and zero sequence networks, numerical problems; Unsymmetrical fault analysis: LG, LL, LLG faults with and without fault impedance, numerical problems.

UNIT - IV STEADY STATE STABILITY ANALYSIS

Classes: 9

Steady state stability: Elementary concepts of steady state, dynamic and transient stabilities, description of steady state stability power limit, transfer reactance, synchronizing power coefficient, power angle curve and determination of steady state stability and methods to improve steady state stability.

	TRANSIENT STATE STABILITY	Classes 0
UNIT - V	ANALYSIS	Classes: 9

Swing equation: Derivation of swing equation, determination of transient stability by equal area criterion, application of equal area criterion, critical clearing angle calculation, solution of swing equation, point by point method, methods to improve stability, application of auto reclosing and fast operating circuit breakers.

Text Books:

- 1. I J Nagrath& D P Kothari, "Modern Power system Analysis", Tata McGraw-Hill Publishing Company, 2nd Edition.
- 2. C L Wadhwa, "Electrical Power Systems", Newage International, 3rd Edition.
- 3. M A Pai, "Computer Techniques in Power System Analysis", TMH Publications.
- 4. N..Ramana "Power System Analysis", Pearson Education India.

Reference Books:

- 1. K Umarao, "Computer techniques and models in power systems", I K International Pvt. Ltd.
- 2. HadiSaadat, "Power System Analysis", 2nd Edition, TMH. Edition, 2003.
- 3. Grainger and Stevenson, "Power System Analysis", Tata McGraw Hill.
- 4. J Duncan Glover and M S Sarma., THOMPSON, "Power System Analysis and Design", 3rd Edition.
- 5. Abhijit Chakrabarthi and SunitaHaldar, "Power system Analysis Operation and control", 3rd Edition, PHI, 2010.

Web References:

- 1. https://www.worldcat.org/title/computer-methods-in-power-system-analysis/.../ 600788826
- 2. <u>https://www</u>.sjbit.edu.in/.../COMPUTER%20%20TECHNIQUES%20IN%20POWER%20%20SYS..
- 3. <u>https://www</u>.books.google.com > Technology & Engineering > Electrical
- 4. https://www.nptel.ac.in/courses/108105067/
- 5. <u>https://www.jntusyllabus.blogspot.com/2012/01/computer-methods-power-systems-syllabus.html</u>

E-Text Books:

- 1. https://www.scribd.com/.../Computer-Methods-in-Power-System-Analysis-by-G-W-St...
- https://www.academia.edu/8352160/
 Computer Methods and Power System Analysis Stagg
- 3. https://www.uploady.com/#!/download/ddC9obmVTiv/NwO1AnQrImogeJjS
- 4. https://www.materialdownload.in/article/Computer-Methods-in-Power-System-Analysis 159/
- 5. https://www.ee.iitm.ac.in/2015/07/ee5253/

Course Outcome:

At the end of the course, a student will be able to:

- 1. Find [Z] bus and [Y] bus of a power system network
- 2. Analyze load flow studies(different algorithms, flow charts)
- 3. Analyze the symmetrical and unsymmetrical components, sequence networks, unsymmetrical fault analysis
- 4. Analyze steady state stability of power system
- 5. Analyze transient stability of power system

CO-PO Mapping

	I . I .	8												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	2	2		2					1	2	2
CO 2	3	3	3	3	2		2					1	2	2
CO 3	3	3	2	3	2		3					1	2	2
CO 4	3	3	2	3	2		2					1	2	2
CO 5	3	3	2	3	3		2					1	2	2
AVG	3	3	2.2	2.8	2.2		2.2					1	2	2

MICROPROCESSORS AND MICROCONTROLLERS

Course Co	de	Category		Hour	's /	Credit		Maxi	imum
				Wee	k	S			
20PC04	14	PROFESSIONAL	L	Τ	Р	С	CIA	SEE	Total
201 C04	14	CORE	3	-	-	3	40	60	100
Contact Class	es:	Tutorial Classes: 0		Pract	ical (Classes: 0	Τα	otal Clas	ses:48
48									
		OB	JECI	FIVES	5:				
1. To introduce	e stu	dents with the architectu	re an	d oper	ation	of typical	micropr	ocessors	and
microcontro	llers								
2. To familiari	ze th	e students with the prog	ramn	ning a	nd int	terfacing o	f microp	rocessor	s and
microcontro	llers								
3. To provide	stron	g foundation for designi	ng re	al wor	ld ap	plications	using mi	croproce	essors
and microco	ontro	llers.							
UNIT-I INTRODUCTION Cla								sses: 10	
8086 Architect	ure-l	Block Diagram, Pin Diag	gram	, Regi	ster C	Organizatio	n, Flag l	Register,	Timing
Diagrams, Men	ory	Segmentation, Interrupt	struc	ture of	f 808	6.			
UNIT-II	IN	STRUCTION SET &]	PRO	GRA	MMI	NG		Cla	sses: 10
Addressing Mc	des-	Instruction Set of 8086	ó, As	sembl	er Di	irectives-	Macros	and Pro	cedures-
Simple ALPs.									
UNIT-III	L	DW POWER RISC MS	SP43()				Cl	asses: 9
Block diagram	, fea	tures and architecture,	Varia	ants of	f the	MSP430	family v	iz. MSP	430x2x,
MSP430x4x, N	ISP4	30x5x and their target	ed aj	pplicat	tions,	Register	sets Ad	dressing	modes,
Instruction set,	on-c	hip peripherals (analog a	and d	igital)	San	nple Embe	dded sys	tem on l	MSP430
microcontroller									
UNIT-IV	I/() PORTS						Cla	sses: 10
Pull up/down	resis	tors concepts, Interrupt	s, W	atchdo	og Ti	imer, Syst	em cloc	ks, Low	Power
aspects of MSF	430	: Low power modes, A	ctive	Vs St	andb	y current	consump	tion, FR	AM Vs
Flash, Basic Tir	ners	, Real Time Clock (RTC), PV	VM co	ntrol,	Data tran	sfer using	g DMA	
UNIT-V	SF	CRIAL COMMUNICA	ΤΙΟ	N				Cla	sses: 10
		on basics, Synchronous/	•						
I2C.Implementi	ngar	ndprogrammingUART,I2	2C,SI	PI int	erface	es using	MSP430	, Imple	menting
Embedded Wi-l	Fi us	ing CC3100							
Text Books:									

1. A.K.Ray&K.M. Bhurchandi "Advanced Microprocessors and Peripherals", 2nd Edition TMH 2012.

2. MSP430 microcontroller basics, John H. Davies, Newnes Publication, 1st Edition, 2008.

Reference Books:

- 1. The X86 Microprocessors, Architecture, Programming and Interfacing, Lyla B. Das, Pearson Publications,2010
- 2. http://processors.wiki.ti.com/index.php/MSP430 LaunchPad Low Power Mode
- 3. http://processors.wiki.ti.com/index.php/MSP430 16-Bit Ultra-Low Power MCU Training

Course Outcomes: The students can able to

- 1. Assess and solve basic binary math operations using the microprocessor and explain the microprocessor's and Microcontroller's internal architecture and its operation within the area of manufacturing and performance.
- 2. Apply knowledge and demonstrate programming proficiency using the various addressing modes and data transfer instructions of the target microprocessor and microcontroller.
- 3. Analyze assembly language programs; select appropriate assemble into machine a cross assembler utility of a microprocessor and microcontroller.
- 4. Design and implement specific real time applications
- 5. Evaluate assembly language programs and download the machine code that will provide solutions real world control problems.

		o namp	r8											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	2								1	2	1
CO 2	2	2	1	3								1	2	1
CO 3	3			3								1	2	1
CO 4	3	1		3								1	2	2
CO 5	3	2	2	3								1	2	2
AVG	2.8	1.4	1.2	2.8								1	2	1.4

CO-PO Mapping

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org **MODERN CONTROL THEORY**

Course Code Hours / Week Credits Category **Maximum Marks PROFESSIONA** L Т Р С CIA 20PE0204 L ELECTIVE 3 3 _ _ 40 Contact **Practical Classes: 0 Total Classes: 48 Tutorial Classes: - 0** Classes: 48

OBJECTIVES:

The course should enable the students to:

- Concept of State Variable analysis and design I.
- II. Analyze Solution of State equations
- III. Tests for controllability and observability.
- IV. Analyze stability in the sense of Lyapunov
- V. Design of Phase plane analysis.

UNIT-I STATE VARIABLE ANALYSIS AND DESIGN

Classes:9

Classes:10

SE

Е

60

Total

100

Introduction, definitions, State space formulation, State model, Derivation of transfer function from a state model, Derivation of state model from transfer function, State diagram representation, state diagram of standard state model, State model of electrical systems.

Introduction, Solution of non-homogeneous state equation, State transition matrix and its properties, Evaluation of state transition matrix by -Power series method, Inverse Laplace transforms method, Cayley Hamilton theorem.

UNIT - III CONTROLABILITY AND OBSERVABILITY

Classes:10 Concept of controllability and observability, Methods of testing the state equations,

Principle of Duality, Problems.

UNIT - IV LYAPOUNOV'S STABILITY ANALYSIS

Stability in the sense of Lyapunov's. Lyapunov's stability and Lyapunov's instability theorems. Direct method of Lyapunov's for the linear and Nonlinear continuous time autonomous system.

UNIT - V PHASE PLANE ANALYSIS

Classes:9

Classes:10

Introduction, methods of analysis-phase plane analysis, Singular points, Construction of phase trajectories, Numerical problems

Text Books:

1. M Gopal, "Modern Control System Theory", New Age International Publishers,

Revised2nd Edition, 2005.

- 2. K Ogata, "Modern Control Engineering", Prentice Hall, 5th Edition, 2010.
- 3. N C Jagan, "Control Systems", BS Publications, 1st Edition, 2007.

Reference Books:

- 1. J Nagrath, M Gopal, "Control Systems Engineering", New Age International Publications, 4th Edition.
- 2. DRoy Choudhury, "Modern Control Engineering", PHI Learning private Limited, 2015
- 3. Anand Kumar, "Control Systems", PHI Learning, 1st Edition, 2007.
- S Palani, "Control Systems Engineering", Tata McGraw Hill Publications, 1st Edition, 2001.
- 5. N K Sinha, "Control Systems", New Age International Publishers, 1st Edition, 2002.

Web References:

- 1. <u>https://www.researchgate.net</u>
- 2. https://www.aar.faculty.asu.edu/classes
- 3. https://www.facstaff.bucknell.edu/
- 4. https://www.electrical4u.com
- 5. <u>https://www.crectirupati.com</u>

E-Text Books:

- 1. https://www.jntubook.com/
- 2. <u>https://www.freeengineeringbooks.com</u>

Course Outcomes:

At the end of course, the student will be able to

- Able to design a state diagram of a state model
- Able to find the solutions of a state equation
- Able to test whether a given system is controllable and/or observable
- Understand the Lyapunov criterion and determine stability of a given system
- Understand the Phase plane analysis

CO- PO MAPPING

s (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1	2	2	2		2						1	
CO 2	3	1	2	2	2		2					1	1	
CO 3	3	1	2	1	2		2					2	1	
CO 4	3	1	2	2	2		2					2	1	
CO 5	3	1	2	2	3		2						1	
AVG	3	1	2	1.8	2.2		2					1	1	

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org INDUSTRIAL AUTOMATION AND CONTROL

Course Code	Category	Но	urs / We	ek	Credit s	Maxi	Maximum Marks			
20PE0205	PROFESSIONAL	L	Т	P	С	CIA	SEE	Total		
201 E0205	ELECTIVE	3	-	-	3	40	60	100		
Contact Classes: 48	Tutorial Classes:0	<u>.</u>	Practi	cal (48	Classes:	Total Classes: 4		es: 48		

OBJECTIVES:

The course should enable the students to:

- I. Learn the fundamental concepts about introduction to industrial automation and control and devices.
- II. Study the performance of each system in detail along with practical case studies.
- III. Develop various types of industrial automation and control and devices.
- IV. Understand the process control of PLC automation.

UNIT-I	INTRODUCTION TO INDUSTRIAL	Classes:10
UNII-I	AUTOMATION AND CONTROL	Classes:10

Introduction to Industrial Automation and Control: Introduction to industrial automation and control architecture of industrial automation system, measurement systems specifications, temperature measurement, pressure and force measurement, displacement and speed measurement, signal conditioning circuits, errors and calibration.

UNIT - II	PROCESS CONTROL	Classes: 10
implementation of	Introduction to process control, PID control, control PID controllers, special control structures, feed forwar ntrol structures: predictive control, control of systems	oller tuning, rd and ratio
UNIT -III	PROGRAMMABLE LOGIC CONTROL SYSTEMS	Classes:10

Programmable lo	gic control systems: introduction to sequence or logic	control and
programmable logi	ic controllers, the software environment and programmin	ig of PLCs,
formal modeling of	sequence control specifications.	

Programming of PLCs: sequential function charts, the PLC hardware environment.

UNIT -IV	T -IV CNC MACHINES AND ACTUATORS						
CNC machines	and actuators: Introduction to computer numerically	controlled					
machines, control	valves, hydraulic actuation systems, principle and o	components,					

directional control	valves, switches and gauges, industrial hydraulic cir	rcuits.
UNIT - V	ELECTRICAL MACHINE DRIVES	Classes: 9
principles, constr	ne drives: Energy savings with variable speed of uction and drives, electrical actuators, dc moto n motor drives, electrical actuators, BLDC motor dri	or drives, electrical
Text Books:		
Industrial Auto Ltd., 1 st Edition 2. <u>K Krishnas</u> <u>Publications, 1</u> 3. <u>Rajesh Me</u>	swamy,SVijayachitra,"Industrial Instrumentation", N st Edition, 2010. hra, Vikrant Vij, "PLCs& SCADA: Theory and Prac	lishing (India) Pvt. Iew Age
publications, 2	nd Edition, 2016.	
Reference Books:		
2 nd Edition, 20 2. Jon Steners Edition, 2002. Web References:	<u>13.</u> son, "Industrial Automation and Process Control", Pr	rentice Hall, 1 st
	oogle.co.in/search?	
q=INTRODUC tf-8&oe=utf-8a 2. https://www.no 3. <u>https://www.ra</u>	CTION+TO+INDUSTRIAL+AUTOMATION+ANE &client=firefox-b-ab&gfe_rd=cr&ei=PUocWOXVL porropidah.files.wordpress.com/2012/01/plc-1-3.pdf <u>dix.co.in/families/automation?</u> <u>PbjtACFUYeaAodiCQGHQ</u>	67v8weKwZngAw
E-Text Books:		
2. <u>https://www.m</u> Course Outcome: At the end of the c	ourse, a student will be able to:	
control and 2. Understand studies.	e fundamental concepts about introduction to indust l devices. I the performance of each system in detail along arious types of industrial automation and control and	with practical case
4. Understand	the process control of PLC automation. etrical machine drives concept to real world problems	

CO-PO Mapping

(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	2	2		2					1	2	2
CO 2	3	1	1	2	2		2					1	2	2
CO 3	3	3	3	3	2		2					1	2	2
CO 4	3	3	2	2	2		2					1	2	2
CO 5	3	2		2	3		2					1	2	2
AVG	3	2.4	1.7	2.2	2.2		2					1	2	2

POWER ELECTRONICS AND DISTRIBUTED GENERATION

Course Code	Category	Hou	rs / W	eek	Credi ts	N	laxim Mark	
20PE0206	PROFESSIONAL ELECTIVE	L	Т	Р	С	CI A	SE E	Tota l
	ELECTIVE	3	-	-	3	40	60	100
Contact Classes:48	Tutorial Classes:0	Prac	tical C	lasse	es: 0	Tota	l Class	ses: 48
OBJECTIVES:						1		
The course shou	ld enable the students	s to:						
I. Understand d	listribution system prot	ection	and po	wer	quality re	quiren	nents.	
II. Discuss distr	ibuted generation plann	ning in	ter con	necti	on and pr	otectio	on.	
III. Illustrate the	various control scheme	es of D	G inve	rters.				
UNIT-I	-I INTRODUCTION TO DISTRIBUTION Classes:10							
-	alysis, sequence components, implications o		-	-	-			
UNIT – II	POWER QUALITY	REQ	UIREN	MEN	TS		Class	ses:9
drop model, seri	g using SCR based states voltage regulators at tion grids and impact of	and on	line t	ap cł		•		-
UNIT – III	PROTECTION ANI	D DG	INTEF	RCO	NNECTI	ON	Class	ses:9
using CTs and P	btection, distributed gen Ts, Islanding distribution bution systems, passiven nes.	on syst	ems in	tentio	onal and u	uninter	tional	2
UNIT – IV	DG PLANNING						Class	ses:10
calculations and	st implications of power implications on power specifications for DG a	r conv	erter d	esign	power c	onvert	er topo	ologies

bus voltage, current ripple, capacitor aging and lifetime calculations, switching versus average model of the power converter and EMI considerations in DG applications, semiconductor device selection, device aging due to thermal cycling, and lifetime calculations.

UNIT – V CONT

CONTROL OF DG INVERTERS

Classes:10

Phase locked loops, current control and DC voltage control for stand alone and grid parallel operations, protection of the converter, complex transfer functions, VSI admittance model in DG applications, power quality implication, acceptable ranges of voltage and frequency, flicker, reactive power compensation, and active filtering and low voltage ride through requirements.

Text Books:

- 1. Arthur R. Bergen, Vijay Vittal, "Power Systems Analysis", Prentice Hall, 1999.
- 2. Ned Mohan, Tore M Undeland, William P. Robbins, "Power Electronics", converters, Applications, and Design; Wiley, 2002.

Reference Books:

1. Math H. Bollen, Finan Hassan, "Integration of Distributed Generation in the Power System

IEEE Press Series on Power Engineering)", Wiley, 1st Edition, 2011.

2. TuranGonen, "Electric Power Distribution Engineering, CRC Press, 3rd Edition, 2014.

3. E W Kimbark, "Direct Current Transmission", Wiely Inter Science – New York,1st Edition, 1971.

Course Outcome:

At the end of the course, a student will be able to:

- 1. Develop a foundational understanding of distributed systems, showcasing the ability to analyze, design, and implement basic distributed applications, demonstrating knowledge of key concepts such as communication protocols, fault tolerance, and scalability.
- 2. Demonstrate proficiency in meeting power quality standards, ensuring stable and reliable electrical systems through the application of industry-specific requirements and regulations.
- 3. Acquire expertise in safeguarding electrical systems and integrating Distributed Generation (DG), demonstrating the ability to design, implement, and maintain effective protection mechanisms for secure and reliable power distribution.
- 4. Develop skills in Distributed Generation (DG) planning, showcasing the ability to analyze, design, and optimize DG systems for efficient integration into power networks, ensuring reliable and sustainable energy distribution.
- 5. Attain proficiency in the control of Distributed Generation (DG) inverters, demonstrating the ability to design and implement effective control strategies for

optimal performance and integration into power systems.

	PO1	PO2												
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3	2	2	2						1	2	2
CO 2	3	2	3	2	2	3						1	2	3
CO 3	3	1	2	2	2	3						1	3	2
CO 4	3		2	3	2	3						1	3	2
CO 5	3	2		2	3	2						1	3	2
AVG	3	2	2.5	2.2	2.2	2.6						1	2.6	2.2

CO-PO Mapping

POWER SYSTEM OPERATION AND CONTROL

Course Co	ode	Category]	Hour Wee		Credits	I	Maximum Marks			
2000020	~	PROFESSIONAL	L	Т	P	С	CIA	SEE	Total		
20PE020	• /	ELECTIVE	3	-	-	3	40	60	100		
Contact Classes: 4		Tutorial Classes: 0)	Practical Classes: 0			otal Cla	otal Classes: 48			
OBJECTI	VES:						1				
The course	shou	Id enable the students	to:								
• Opt	imun	n generation allocation									
• Hyd	lrothe	ermal scheduling and Mo	odeli	ng of	turbi	nes and ge	nerator	rs			
• Loa	d free	quency control in single	area	and t	wo ar	ea system	s				
• Rea	ctive	power compensation in	pow	er sys	stems						
 Power system operation in competitive environment 											
UNIT-I	ECC	DNOMIC OPERATION	N					Class	es:10		
Optimal Op	Optimal Operation of Thermal Power Units, - Heat Rate Curve – Cost Curve –Incremental										
Fuel and P	roduc	ction Costs, Input-Outpu	ut Cl	naract	eristi	cs, Optim	um Ge	neration	Allocation		
with Line	Loss	es Neglected. Optimur	n Ge	enerat	tion 1	Allocation	Inclu	ding the	e Effect of		
Transmissio	on Li	ne Losses – Loss Coeffi	cient	s, Ge	neral	Transmiss	ion Lii	ne Loss	Formula.		
UNIT-II	HYI	DROTHERMAL SCHI	EDU	LINC	r J			Class	es:10		
		uling of Hydrotherma						ver Plan	nt Models,		
-		lems-Short Term Hydro				-					
_		rbine: First Order Turb		Aodel	, Bloo	ck Diagran	n Repr	esentatio	on of Steam		
	-	proximate Linear Mode									
_		vernor: Mathematical N	Mode	eling o	of Spe	eed Gover	ning Sy	ystem.			
Modeling of	of Ge	nerator:						1			
UNIT- III	LOAD FREQUENCY CONTROL Classes:9										
Necessity of	of Ke	eeping Frequency Cons	stant.	Def	initio	ns of Cor	ntrol A	rea – S	Single Area		
Control – B	Block	Diagram Representation	n of a	an Iso	lated	Power Sys	stem.				
Load Frequ	iency	Control of 1-Area Syste	em								
-		alysis – Dynamic Respo									
		Control of 2-Area Syst									
Line Bias C	Contro	ol. Proportional Plus Inte	egral	Cont	rol of	f Single A	rea and	l Its Blo	ck Diagram		

Representation, Steady State Response – Load Frequency Control and Economic Dispatch Control.

UNIT- IVREACTIVE POWER CONTROLClasses:10
Overview of Reactive Power Control - Reactive Power Compensation in Transmission
Systems - Advantages and Disadvantages of Different Types of Compensating Equipme
for Transmission Systems; Load Compensation - Specifications of Load Compensate
Uncompensated and Compensated Transmission Lines: Shunt and Series Compensation.
UNIT-V POWER SYSTEM OPERATION IN COMPETITIVE ENVIRONMENT Classes:9
Introduction - Restructuring models - Independent System Operator (ISO) - Pow
Exchange - Market operations - Market Power - Standard cost - Transmission Pricing
Congestion Pricing - Management of Inter zonal/Intra zonal Congestion - Electricity Pri
Volatility Electricity Price Indexes Challenges to Electricity Pricing
Text Books:
1. I Elgerd, "Electrical Energy Systems Theory", Tata Mc Graw Hill, 2 nd Edition,200
2. Power System Analysis Operation and Control, Abhijit Chakrabarti and Sun
Halder, PHI Learning Pvt. Ltd.,, 3rd Edition, 2010.
3. Modern Power System Analysis, D.P.Kothari and I.J.Nagrath, Tata McGraw H
Publishing Company Ltd., 3rd Edition, 2003, Ninth Reprint 2007.
Reference Books:
1. Power System Analysis and Design, J. Duncan Glover and M.S.Sharma, Thomson
3rd Edition, 2008.
 Electric Energy System Theory: An Introduction, OlleIngemarElgerd, Tata McGra Hill, 2nd Edition, 1982.
3. Power System Stability and Control, P Kundur, Tata Mc Graw Hill, 1994, 5th

3. Power System Stability and Control, P Kundur, Tata Mc Graw Hill, 1994, 5th Reprint, 2008.

Course Outcomes: After completion of the course, the student will able to:

- Analyse the Optimum generation allocation
- Develop the mathematical models of turbines and governors
- Analyze the Load Frequency Control problem
- Explain how shunt and series compensation helps in reactive power control
- Explain the issues concerned with power system operation in competitive Environment

CO-PO Mapping

	PO1	PO2	PO3	PO43	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	2	2		2					2	3	3
CO 2	3	3	3	2	2		2					2	3	3
CO 3	3	3	2	2	2		2					2	3	3
CO4	3	2	2	2	2		2					2	3	3
CO5	3	2	1	3	2		2					2	3	3
AVG	3	2.4	2.2	2.2	2		2					2	3	3

ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LABORATORY

Credi Maximum **Course Code** Hours / Week Category t Marks CI SE Tot L Т Р С PROFESSIONAL E 20PC0220 al Α CORE 40 60 100 _ 3 1.5 Contact **Practical Tutorial Classes: 0 Total Classes: 48** Classes:48 Classes: 0

OBJECTIVES:

The course should enable the students to:

- I. Understand various measurement techniques used in electrical engineering.
- II. Analyse waveforms using LabVIEW to measure various parameters.
- III. Demonstrate the use of sensors and transducers in electrical and nonelectrical measurements.
- IV. Apply knowledge of virtual instruments in measurement of analysis of electrical parameters.

LIST OF EXPERIMENTS

Expt. 1	SENSING OF TEMPERATURE							
Measurement of temperature using transducers like, thermistors								
Expt. 2	Expt. 2 MEASUREMENT OF LOW RESISTANCE							
Kelvin's Double Bridge – Measurement of Resistance – Determination of Tolerance								
Expt. 3	Kpt. 3CALIBRATION OF DYNAMO METER POWER FACTOR METER							
Calibration of	Calibration of Dynamometer Power Factor Meter.							
Expt. 4	MEASUREMENT OF PARAMETERS OF A CHOKE COIL							
Measurement of Parameters of a Choke Coil Using 3 Ammeter Method								
Expt. 5	PHANTOM LOADING ON LPF WATTMETER							
Calibration of	Calibration of Electrodynamometer type LPF wattmeter using phantom loading							
Expt. 6	CALIBRATION OF SINGLE PHASE ENERGY METER AND							

	POWER FACTOR METER								
	of single phase energy meter using resistive load and dynamometer power								
factor meter.									
Expt. 7	MEASUREMENT OF PARAMETERS OF A CHOKE COIL								
Measuremen	t of Parameters of a Choke Coil Using 3 Voltmeter Method								
Expt. 8	MEASUREMENT OF REACTIVE POWER								
Measurement of reactive power using one single phase wattmeter.									
Expt. 9	MEASUREMENT OF FREQUENCY AND PHASE VOLTAGE BY CRO								
Measuremen	t of frequency and phase voltage by CRO.								
Expt. 10	SCHERING BRIDGE								
Measuremen	t of unknown capacitance using scheringbribge.								
Expt. 11	ANDERSON BRIDGE								
Measuremen	of unknown inductance using Andersons bridge.								
Expt. 12	MEASUREMENT OF REAL AND REACTIVE POWERS BY TWO WATTMETER METHOD								
	t of real and reactive powers of an electrical load using two wattmeter								
method									
Reference B									
-	ww.bookpump.com/bwp/pdf-b/2335004b.pdf.								
	ww.books.google.co.in > Technology & Engineering > Sensors								
-	ww.bambang.lecturer.pens.ac.id/rekayasa%20sensor%20aktuator/Sensors 20Trans								
-	ww.sae.org/images/books/toc_pdfs/BELS036.pdf								
Web Refere									
	w.gnindia.dronacharya.info/EEEDept/Downloads/Labmanuals/EMI_Lab.pdf								
-	ww.scribd.com/doc/25086994/electrical-measurements-lab								
Course Hom	ne Page:								
SOFTWAR	E AND HARDWARE REQUIREMENTS :								
SOFTWAR	E:MATLAB R2015a								
HARDWARE: Desktop Computers (04 nos)									
Course Outcome:									
At the end of the course, a student will be able to:									
	e various Measuring /Integrating/recording type Measuring instruments								
	Resistance inductance capacitance using DC ,AC bridges								
3. Measure	Parameters of Choke coil.								

- 4. Measure power /Reactive power/ power factor of 3 phase balance unbalance loads
- 5. Measure Frequency and Phase Voltage By CRO
- 6. Follow the ethical principles in implementation of experiments
- 7. Do Experiments effectively as individual and as team member in a group
- 8. Communicate verbally and in written form, understanding about the experiments
- 9. Continue Updating the skills related to contemporary technology

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	3					2	2			2	1
CO 2	3	2		3					2	2			2	1
CO 3	3	2		3					2	2			2	1
CO 4	3	2		3					2	2			2	1
CO 5	3	1		2					1	2			2	1
CO 6								3					1	1
CO 7									3				1	1
CO 8										3			1	1
CO 9												3	1	1
AVG	3	1.8	2	2.8				3	2	2.1		3	1.5	1

COMPUTER AIDED DESIGN LABORATORY

Course	Code	Category	Но	urs / W	eek	Credit s	Maxi	mum I	Marks					
		PROFESSION	L	Т	Р	С	CIA	TIA SEE Tota						
20PC0	221	AL CORE	-	-	3	1.5	40	40 60 10						
Contact C 0	Contact Classes: 0 Tutorial Classes: 0 Practical Classes: 48 Total Clas 0 DBJECTIVES:								es: 48					
OBJECTI	VES:			1			I							
		enable the student												
		Insmission line para		using I	MATL	AB								
	•	bility in power syste fferent power electre		nverter	S									
		LIST OI												
Expt. 1		Parameters For T N Parameters For Lor												
Expt.2	Reactiv	ve Power And Powe	er Facto	or Corre	ection									
Expt.3	Two A	rea Power System												
Expt.4	Modeli	ng of Two-Area Po	wer Sy	stem										
Expt.5	Single	Machine Infinite Bu	15											
Expt.6	Load F	requency Control												
Expt.7	Simula	tion of Single Phase	e Half I	Bridge l	Rectifie	er								
Expt.8	Simula	tion of Single Phase	e Full E	Bridge F	Rectifie	er								
Expt.8	Simula	tion of Three Phase	Semi	Bridge	Rectifie	er								
Expt.10	Simula	tion of Single Phase	e Inver	ter										
Expt.11	Simula	tion of Three Phase	Invert	er for 1	20° and	1 180° Co	onductio	on angl	e					
Expt. 12	Simula	tion of Three Phase	AC V	oltage F	Regulat	or								

Expt.13	Simulation of Three Phase Duel Converter.
Парило	Simulation of Three Thase Buer Converter.

Reference Books:

- MAPai, "Computer Techniques in Power System Analysis", TMH Publications, 1st Edition, 2010
- Grainger, Stevenson, "Power System Analysis", Tata McGraw Hill, 1st Edition, 2010

Web References:

- 1. https://www.ee.iitkgp.ac.in
- 2. <u>https://www.crectirupati.com</u>

Course Outcomes:

The student can able to

- 1. Simulate transmission line parameters using MATLAB/Simulink.
- 2. Simulate the stability of power system network using MATLAB Simulink.
- 3. Simulate and obtain different firing pulses for Power Electronic Converters using MATLAB/Simulink.
- 4. Simulate and obtain waveforms for different firing angle of Power Electronics Converter using MATLAB/Simulink.
- 5. Simulate different Power Electronic Circuits using MATLAB/Simulink.
- 6. Follow the ethical principles in implementation of experiments
- 7. Do Experiments effectively as individual and as team member in a group
- 8. Communicate verbally and in written form, understanding about the experiments
- 9. Continue Updating the skills related to contemporary technology

	CO-1	UNA		J										
	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	3	2	3				2	2		1	3	2
CO 2	3	3	2	3	3				2	2		1	3	2
CO 3	3	2	3	2	3				2	2		1	3	2
CO 4	3	2	3	2	3				2	2		1	3	2
CO 5	3	3	2	3	3				2	2		1	3	2
CO 6								3					1	1
CO 7									3				1	1
CO 8										3			1	1
CO 9												3	1	1
AVG	3	2.4	2.6	2.6	3			3	2.1	2.1		1.3	2.1	1.5

MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Course Code	Category		Hour		Credi	Max	Maximum Marks						
		L	Wee T	к Р	t C	CI	SE	Total					
20PC0416	PROFESSIONAL			r	C	A	E SE	Totai					
201 00410	CORE	_	-	3	1.5	40	60	100					
Contact Classes: Nil	Tutorial Classes:		Practio	cal C 48	Classes:	Tot	al Cla	sses: 48					
OBJECTIVES:					· · · · · · · · ·								
The course should enab	le the students to:												
1. Develop assembly la	nguage programs and p	rovid	e the b	asics	of the n	nicropro	ocesso	rs.					
2. Understanding the in	terfacing of external de	vices	to the	proc	essor and	d contro	oller fo	or					
various applications.													
3. Learn Embedded C p	rogramming using MS	P430	microc	ontro	oller.								
4. Develop ability in pro	ogramming using micro	oproc	essor a	nd m	icrocont	roller.							
LIST OF EXPERIMENT	ГS												
WEEK – I DESIG	N A PROGRAM USI	NGV	WIN86	52									
Design and develop an A	ssembly language prog	ram u	using 8	086 I	nicropro	cessor	and to	show					
the following aspects.													
a) Programmingb)Execut	ý <u>66</u> 6												
To Demonstrate the MAS	SM/TASM software and	d Tra	iner kit	for 8	8086 Mi	croproc	essor						
	FARITHMETIC AN												
Write an ALP program to			U		±	s.							
	IBYTE ADDITION A												
Write an ALP program to				ubtra	ction.								
WEEK -4 PROG	RAMS TO SORT NU	MBE	RS										
10	m to perform ascending		-	-									
b) Write an ALP program	-	-		-									
	RAMS FOR STRING												
	rite an ALP program to				•	-		-					
	rite an ALP program to						-	-					
c) W	c) Write an ALP program to move a block of data from one memory												

	location to theother
	d) Write an ALP program for reverse of a givenstring
WEEK -6	CODE CONVERSIONS
	Write an ALP program to convert packed BCD to Unpacked BCD
WEEK -7	INTERFACING AND PROGRAMMING GPIO PORTS IN Embedded
	C USING MSP430
Interfacing a	and programming GPIO ports in Embedded C using MSP430 (blinking LEDs)
WEEK -8	INTERFACING AND PROGRAMMING GPIO PORTS IN Embedded
	C USING MSP430
Interfacing a	and programming GPIO ports in Embedded C using MSP430 (LED blink using
	push button)
WEEK-9	USAGE OF LOW POWER MODES
a) Measure the	e active modecurrent
b) Standby mo	de current using MSPEXP430FR5969 ashardware
WEEK-10	USING ULP ADVISOR
Using ULP ad	visor in Code Composer Studio on MSP430
WEEK-11	LOW POWER MODES AND ENERGY TRACE++
a) Enable Er	nergy Trace and Energy Trace ++ modes in CCStudio
b) Compute	Total Energy, and Estimated lifetime of an AAbattery.
WEEK-12	PWM GENERATION
-	ion using Timer on MSP430 GPIO
Reference Boo	
-	K.M.Bhurchandi "Advanced Microprocessor and Peripherals", 2 nd Edition
TMH,2012	
	icrocontroller basics. John H. Davies, Newnes Publication, 1st
Edition, 200	
Web Reference	
-	v.nptel.ac.in/downloads/106108100
2. http://wwv	v.the8051microcontroller.com/web-references
Outcomes:	
	this course the students would be able to
	Study the Architecture of 8086 microprocessor.
	Learn the design aspects of I/O and Memory Interfacing circuits. Study the Architecture of MSP430 Microcontroller.
	Fo understand MSP430 Microcontroller programming and interfacing
	Work independently and in teams to solve problems with effective
	unication.
	Follow the ethical principles in implementation of experiments.
	Do Experiments effectively as individual and as team member in a group.
	Communicate verbally and in written form, understanding about the experiments.
9. CO9: C	Continue Updating the skills related to contemporary technology.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	3	-	-	-	-	-	-	-	3	2
CO2	3	1	-	2	-	-	-	-	-	-	-	-	3	2
CO3	3	2	-	1	3	-	-	-	-	-	-	-	3	2
CO4	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO5	3	-	-	-	-	-	-	-	-	-	-	-	3	1
CO6	-	-	-	-	-	-	-	3	-	-	-	-	1	1
CO7	-	-	-	-	-	-	-	-	3	-	-	-	1	1
CO8	-	-	-	-	-	-	-	-	-	3	-	-	1	1
CO9	-	-	-	-	-	-	-	-	-	-	-	3	1	1
AVG	3	2	2	1.5	3	-	-	3	3	3	-	3	2.1	1.4

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

VII SEMESTER

UTILIZATION OF ELECTRICAL ENERGY

Course Code	Category	Нот	irs / V	Veek	Credit	Maximum		
	Category	1100	1157 1	veen	S		Mar	ks
	PROFESSIONA	т	т	Р	C	CI	SEE	Tota
20PE0208	L	L	I	ľ	C	Α	Maxin Mar SEE 60 tal Class	l
	ELECTIVE	3	-	-	3	40	60	100
Contact Classes: 48	Tutorial Classes:	Practical Classes:						

OBJECTIVES:

The course should enable the students to:

• To analyze the various concepts behind renewable energy resources.

- To introduce the energy saving concept by different ways of illumination.
- To understand the different methods of electric heating and electric welding.
- To introduce knowledge on Solar Radiation and Solar Energy Collectors.
- To introduce concepts of Wind Energy and its utilization.

UNIT-I ILLUMINATION

Classes:1

Introduction - definition and meaning of terms used in illumination engineering, law of illumination - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps – design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.

UNIT-II HEATING AND WELDING

Classes:0

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types - resistance welding - arc welding - power supply for arc welding - radiation welding, equipment used for arc welding

UNIT-III | ELECTRIC TRACTION – I

Classes:1

Introduction – Systems of Electric Traction. Comparison Between A.C and D.C Traction – Special Features of Traction Motors - The Locomotive – Wheel arrangement and Riding Qualities – Transmission of Drive – Characteristics and Control of Locomotives and Motor Coaches for Track Electrification – DC Equipment – AC Equipment – Electric Braking with DC Motors and with AC Motors – Control Gear – Auxiliary Equipment – Track Equipment and Collector Gear – Conductor-Rail Equipment – Overhead Equipment – Calculation of Sags and Tensions – Collector Gear for Overhead Equipment.

UNIT-IV ELECTRIC TRACTION – II

Classes:1

Mechanics of Train Movement. Speed-Time Curves of Different Services – Trapezoidal and Quadrilateral, Speed-Time Curves – Numerical Problems. Calculations of Tractive Effort, Power, and Specific Energy Consumption - Effect of Varying Acceleration and Braking Retardation, Adhesive Weight and Coefficient of Adhesion –Problems.

UNIT-VINTRODUCTION TO ELECTRIC AND HYBRID
VEHICLESClasses:9

Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption.

Text Books:

1. N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age

International Limited, 1993.

2. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, 2000.

3. G.D.Rai, "Non-Conventional Energy Sources", Khanna Publications Ltd., New Delhi, 1997.

Reference Books:

1. R.K.Rajput, Utilisation of Electric Power, Laxmi publications Private Limited., 2007.

2. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New

Delhi, 2004.

3. C.L.Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age

International Pvt.Ltd., 2003.

4. S. Sivanagaraju, M. Balasubba Reddy, D. Srilatha,' Generation and Utilization of Electrical

Energy', Pearson Education, 2010.

5. Donals L. Steeby,' Alternative Energy Sources and Systems', Cengage Learning, 2012.

Course Outcomes:

At the end of the course a student will be able to:

- 1. Develop a lighting scheme for a given practical case.
- 2. Analyze the concept of the electric drive and traction.
- 3. Analyze the performance of Heating and Welding methods

- 4. Analyze the performance of electric vehicles.
- 5. Analyze traction motor characteristics.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	SPO2
CO 1	3	3	3	2	2		2					1	2	1
CO 2	3	3	2	2	2		2					1	3	2
CO 3	3	2	1	3	2		2					1	2	1
CO4	3	2	2	2	2		2					1	3	2
CO5	3	1	2	1	2		2					1	3	2
AVG	3	2.2	2	2	2		2					1	2.6	1.6

POWER SYSTEMS STABILITY

Course Code	Category	Но	urs / V	Week	Credit s	Ma	ximun	n Marks
20PE0209	PROFESSION AL	L	Т	Р	С	CI A	SE E	Total
201 E0209	AL	3	-	-	3	40	60	100
Contact Classes: 48	Tutorial Classe	es: 0	Pr	actical (0	Classes:	То	tal Cla	asses: 48
OBJECTIVES:			•					

The course should enable the students to:

- Demonstrate various power system stability problems using single machine infinite bus configuration.
- Apply and explain different methods for analyzing power system stability.
- Create mathematical models for studying dynamic and stability of a power system.
- Illustrate different power system controls, and their impact on the system stability.

UNIT – I	INTRODUCTION TO POWER SYSTEM STABILITY	Classes:10
0111 - 1	PROBLEMS	Classes.10

Definition of stability, classification of stability, rotor angle stability, frequency stability, voltage stability, midterm and long term stability, classical representation of synchronous machine in a single machine infinite bus system (SMIB), equal area criterion to asses stability of a single machine infinite bus system, limitations of classical model of synchronous machines.

UNIT -MODELING OF POWER SYSTEM COMPONENTSClasses:10IIFOR STABILITY ANALYSIS

Synchronous machine modeling: Sub transient model, two axis model, one axis (flux decay) model, classical model; Excitation systems modeling: DC excitation, AC excitation and static excitation, prime mover and energy supply systems modeling, transmission line modeling, load modeling, methods of representing synchronous machines in stability analysis.

UNIT – III	SMALL SIGNAL STABILITY	SMALL SIGNAL STABILITY Classes: 10									
participatic Power syst	al concepts, state space representation, modal analysis: Example an factors, stability assessment, effects of excitation system on tem stabilizer and its design, angle and voltage stability of ems and phenomenon of sub synchronous resonance.	stability.									
UNIT – IV	TRANSIENT STABILITY	Classes: 9									
partitioned faults, dire	als of transient stability, numerical solutions: simultaneou explicit methods, simulation of dynamic response, analysis ct method of transient stability, transient energy function meth transient stability.	s of unbalanced									
UNIT – V	VOLTAGE STABILITY	Classes: 9									
	on of voltage stability, modeling requirements, voltage sta lynamic, sensitivity analysis, modal analysis, voltage collapse.										
Text Book	s:										
	lur, "Power system stability and control", TataMcGraw Hill, 1 st diyar, "Power system dynamics", BSP publications, 2 nd Edition	-									
 K R Pa MAPai 2000. 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education	n, 2010.									
 K R Pa MAPai 2000. Reference MAPai Tata-M Hill, 1st 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education Books: ,K Sengupta and K RPadiyar, "Topics on small signal stability cGraw Edition, 2005 . Anderson and A A Fouad, "Power system stability", Wiley-int	n, 2010. on, 1 st Edition, analysis",									
 K R Pa MAPai 2000. Reference MAPai Tata-M Hill, 1st Paul M 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education Books: ,K Sengupta and K RPadiyar, "Topics on small signal stability cGraw Edition, 2005 . Anderson and A A Fouad, "Power system stability", Wiley-int , 2002.	n, 2010. on, 1 st Edition, analysis",									
 K R Pa MAPai 2000. Reference MAPai Tata-M Hill, 1st Paul M Edition Web Refer https://v https://v https://v 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education Books: ,K Sengupta and K RPadiyar, "Topics on small signal stability cGraw Edition, 2005 . Anderson and A A Fouad, "Power system stability", Wiley-int , 2002.	n, 2010. on, 1 st Edition, analysis",									
 K R Pa MAPai 2000. Reference MAPai Tata-M Hill, 1st Paul M Edition Web Refer https://v https://v https://v 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education Books: ,K Sengupta and K RPadiyar, "Topics on small signal stability cGraw Edition, 2005 . Anderson and A A Fouad, "Power system stability",Wiley-int , 2002. rences: www.researchgate.net www.researchgate.net www.facstaff.bucknell.edu/ www.facstaff.bucknell.edu/ www.electrical4u.com www.crectirupati.com	n, 2010. on, 1 st Edition, analysis",									
 K R Pa MAPai 2000. Reference MAPai Tata-M Hill, 1st Paul M Edition Web Refer https://v https://v https://v https://v https://v https://v https://v 	diyar, "Power system dynamics", BSP publications, 2 nd Edition and Peter WSauer, "Power system stability", Pearson Education Books: ,K Sengupta and K RPadiyar, "Topics on small signal stability cGraw Edition, 2005 . Anderson and A A Fouad, "Power system stability", Wiley-int , 2002. rences: www.researchgate.net www.aar.faculty.asu.edu/classes www.facstaff.bucknell.edu/ www.electrical4u.com www.crectirupati.com oks: www.freeengineeringbooks.com	n, 2010. on, 1 st Edition, analysis",									

- 1. Make all numerical calculations for power system stability problems using single machine infinite bus configuration.
- 2. Analyse different methods for power system stability.
- 3. Create mathematical models for studying dynamic and transient stability of a power system.
- 4. Master small signal stability analysis, showcasing the ability to evaluate and enhance the stability of power systems under small disturbances for reliable and secure operation.
- 5. Analyze different power system controls and their impact on the system voltage stability.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	2	2		2						3	2
CO 2	3	2	2	2	2		2					1	3	2
CO 3	3	3	3	3	2		2						3	2
CO4	3	2	2	2	2		2					1	3	2
CO5	3	1	3	2	2		2					1	3	2
AVG	3	2.2	2.4	2.2	2		2					0.6	3	2

FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS

Course Code	Category	ırs / W	eek	Credit s		laximum Marks		
20PE0214	PROFESSION AL	L	Т	Р	С	CIA	SE E	Tota l
	ELECTIVE	3	-	-	3	40	60	100
Contact Classes:	Tutorial Classes: 0		Pra	ctical	Classes:	S: Total Classes:		
48				0		48		

OBJECTIVES:

The course should enable the students to: The objectives of the course are to make the students learn about:

- The basic concepts, different types, and applications of FACTS controllers in
- power transmission.
- The basic concepts of static shunt and series converters
- The working principle, structure and control of UPFC

UNIT – I	CONCEPTS OF FLEXIBLE AC TRANSMISSION	Classes:
	SYSTEMS	10

Classes: 10

Transmission line Interconnections, Power flow in parallel lines, Mesh systems, Stability considerations, Relative importance of controllable parameters, Basic types of FACTS controllers, Shunt controllers, Series controllers, Combined shunt and series controllers, Benefits of FACTS.

UNIT – II VOLTAGE AND CURRENT SOURCED CONVERTERS

Concept of Voltage Sourced Converters, Single Phase Full Wave Bridge Converter, Three Phase Full Wave Bridge Converter, Transformer Connections for 12-Pulse Operation, 24 and 48-Pulse Operation, Three Level Voltage Sourced Converter, Pulse Width Modulation (PWM) Converter, Converter Rating, Concept of Current Sourced Converters, Thyristor based converters, Current Sourced Converter with Turn off Devices, Current Sourced –vs- Voltage Sourced Converters.

UNIT - IIISTATIC SHUNT COMPENSATORSClasses: 10								
Objectives of Shunt Compensation, Midpoint Voltage Regulation for Line Segmentation,								
End of Line Voltage Support to Prevent Voltage Instability, Improvement of Transient								
Stability, Power Oscillation Damping, Methods of Controllable VAR Generation,								
Variable Impedance Type Static VAR Generators, Switching Converter Type VAR								
mGenerators, Hybrid VAR Generators, SVC and STATCOM, Transient Stability								
Enhancement and Power Oscillation Damping, Comparison Between STATCOM and								
SVC, V-I, V-Q Characteristics, Response Time.								
UNIT - IVSTATIC SERIES COMPENSATORSClasses: 9								
Objectives of Series Compensation, Voltage Stability, Improvement of Transient								
Stability, Power Oscillation Damping, Subsynchronous Oscillation Damping, Variable								
Impedance Type Series Compensators, GTO Thyristor Controlled Type Series Capacitor								
(GCSC), Thyristor Switched Series Capacitor (TSSC), Thyristor-Controlled Series								
Capacitor(TCSC), Basic Operating Control Schemes for GCSC, TSSC, and TCSC,								
Switching Converter Type Series Compensators, The Static Synchronous								
Series Capacitor(SSSC), Transmitted Power Versus Transmission Angle Characteristic,								
Control Range and VA Rating, Capability to Provide Real Power Compensation.								
UNIT - VPOWER FLOW CONTROLLERSClasses: 9								
The Unified Power Flow Controller-Basic Operating Principles, Conventional								
Transmission Control Capabilities, Independent Real and Reactive Power Flow Control.								
Control Structure, Basic Control System for P and Q Control, Dynamic Performance,								
The Interline Power Flow Controller (IPFC), Basic Operating Principles and								
Characteristics, Generalized and Multi controller FACTS controllers.								
Text Books:								
1. Mohan Mathur, R Rajiv K Varma, "Thyristor – Based FACTS controllers for								
Electrical Transmission Systems", IEEE press and John Wiley & Sons, 1st Edition,								
2002.								
2. K RPadiyar," FACTS Controllers in Power Transmission and Distribution", New								
Age International (P) Ltd., Publishers, 1 st Edition, 2008.								
3. A T John, "Flexible AC Transmission System", Institution of Electrical and								
Electronic Engineers (IEEE),2 nd Edition, 1999.								
Reference Books:								
1. Narain G Hingorani, LaszioGyugyl, "Understanding FACTS Concepts and								
Technology of Flexible AC Transmission System", Standard Publishers, 1st Edition,								
2001.								
2. K Sood, "HVDC and FACTS controllers- Applications of Static Converters in Power								
System", Kluwer Academic Publishers,1 st Edition, 2004.								
Web References:								
1. https://www.researchgate.net								

2. https://www.aar.faculty.asu.edu/classes

E-Text Books:

- 1. https://www.jntubook.com/
- 2. <u>https://www.freeengineeringbooks.com</u>

Course Outcome:

At the end of the course, a student will be able to:

- 1. Knows the concept of available FACTS Controllers and able to analysis the power flow control in AC Transmission line.
- 2. Analyze and implement FACTS with Voltage and Current soured converters.
- 3. Analyze the static series and shunt control FACTS devices.
- 4. Demonstrate proficiency in understanding and applying static series compensators, showcasing the ability to analyze, design, and optimize their use in power systems for voltage control and stability enhancement.
- 5. Analyze the performance of UPFC and IPFC for enhancing the transmission capability

-	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01													
	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1	2	2	2		3						3	3
CO 2	3	2	3	2	2		2						3	3
CO 3	3	2	3	3	2		2						3	3
CO4	3	2	3	2	2		2						3	3
CO5	3	1	3	2	2		2						3	3
AVG	3	1.6	2.8	2.2	2		2.2						3	3

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o

POWER SYSTEM TRANSIENTS

Course Code	Category	Hou	rs / W	'eek	Credits	Maximum Marks			
	PROFESSIONA	L	Т	Р	С	CIA	SEE	Total	
20PE0211	L ELECTIVE	3	-	-	3	40	60	100	
Contact Classes: 48	Tutorial Classe	Pra	ctical	Classes: 0	Tot	al Class	es: 48		

OBJECTIVES:

The course should enable the students to:

- Summarize the generation of switching transients and their control using circuit, theoretical concepts and analyze security and contingency evaluation.
- Discuss the mechanism of lighting strokes and the production of lighting surges.
- Outline the propagation, reflection and refraction of travelling waves.
- Appraise the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

UNIT-I INTRODUCTION TO TRANSIENTS

Classes: 10

Study of transients: Review and importance of the study of transients, causes for transients, RL circuit transient with sine wave excitation, double frequency transients, basic transforms of the RLC circuit transients, different types of power system transients, effect of transients on power systems, role of the study of transients in system planning.

UNIT - II SWITCHING TRANSIENTS

Classes: 10

Switching transients: Over voltages due to switching transients, resistance switching and the equivalent circuit for interrupting the resistor current, load switching and equivalent circuit, waveforms for transient voltage across the load and the switch, normal and abnormal switching transients; Effects of switching transients: Current suppression, current chopping, effective equivalent circuit, capacitance switching, effect of source regulation, capacitance switching with a restrike, with multiple re strikes, illustration for multiple restriking transients, Ferro resonance

UNIT - III	LIGHTNING TRANSIENTS	Classes: 10							
Cloud formation: Review of the theories regarding the formation of clouds and charge									
formation,	rate of charging of thunder clouds.								

Characteristics of lightning transients: Mechanism of lightning discharges and

UNIT -	htning and power system. TRAVELING WAVES ON TRANSMISSION LINE -	Classes: 9
IV	COMPUTATION OF TRANSIENTS	
shunt lump step respon	n: Computation of transients, transient response of systems we ed parameters and distributed lines; Travelling wave: Traveling se, Bewely's lattice diagram, standing waves and natural frequence	wave concept
and refracti UNIT - V	on of travelling waves.	Classes: 9
UNII - V	TRANSIENTS IN INTEGRATED POWER SYSTEM	Classes: 9
qualitative a Text Books 1. Allan C NewYo 2. Pritindr Sons Inc	Greenwood, "Electrical Transients in Power Systems", Wiley rk,2 nd Edition, 1991. a Chowdhari, "Electromagnetic transients in Power System", Jo c., 2 nd Edition, 2009.	Inter Science ohn Wiley and
	lulkar, D P Kothari, K Ramalingam, "Power System Transients h", Prentice Hall of India, 2 nd Edition, 1996.	s: A statistica
Reference	Books:	
 2013. 2. RD Be Eastern 3. Y Hase, 4. J L Kir Wiley, 	idu, V Kamaraju, "High Voltage Engineering", Tata McGraw Hegamudre, "Extra High Voltage AC Transmission Enginee Limited,2 nd Edition, 1986. , "Handbook of Power System Engineering", Wiley India, 1 st Edition tley, "Electric Power Principles, Sources, Conversion, Distribu 1 st Edition, 2012.	ering", Wiley ion 2012.
Web Refer	ences:	
327516	www.researchgate.net// 7_Categorization_and_Analysis_of_Power_Sy	
1	vww.ece.mtu.edu/faculty/bamork/ee5220/	
1	www.books.google.co.in/books?isbn=1466577843	
A 1	www.studyname.com/community/archive/index.php/t-351.html.	
_	DKS:	
E-Text Boo		
E-Text Boo 1. <u>https://v</u>	<pre>vww.crcpress.com/Power-System-Transients vww.chegg.com > > electronics > power system transients</pre>	

The student should have learnt about:

- 1. Develop a foundational understanding of transients, demonstrating the ability to identify, analyze, and mitigate transient phenomena in electrical systems for improved reliability and performance.
- 2. Gain expertise in switching transients, showcasing the ability to analyze and manage transient effects during circuit switching, ensuring stable and efficient operation in electrical systems.
- 3. Master the understanding of lightning transients, demonstrating the ability to analyze and implement protective measures to minimize the impact of lightning-induced disturbances in electrical systems for enhanced reliability.
- 4. Develop proficiency in analyzing and understanding traveling waves on transmission lines, showcasing the ability to assess and manage wave propagation for improved performance and reliability in electrical power systems.
- 5. Acquire expertise in handling transients in integrated power systems, demonstrating the ability to identify, analyze, and implement strategies to mitigate transient effects, ensuring stability and reliability in complex power networks.

							-							
	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PO12	PO12
CO 1	3	2	3	3	2		3						3	3
CO 2	3	2	2	1	2		2						3	3
CO 3	3			2	2		3						3	3
CO 4	3	3	3		2		2						3	3
CO 5	3	3	3	2	2		3						3	3
AVG	3	2	2.2	1.6	2		2.6						3	3

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o

ELECTRICAL DRIVES

Course Code	Category	Hou	rs / W	Week Credits		Maximum Marks		
	PROFESSIONA	L	Т	Р	С	CIA	SEE	Total
20PE0212	L ELECTIVE	3	-	-	3	40	60	100
Contact Classes: 48	Tutorial Classe	Pra	ctical	Classes: 0	Tot	al Class	es: 48	

OBJECTIVES:

IV

At the end of this course, students will demonstrate the ability to

- 1. Understand the characteristics of dc motors and induction motors.
- 2. Understand the principles of speed-control of dc motors and induction motors.
- 3. Understand the power electronic converters used for dc motor and induction motor speed control.

UNIT-I CONVERTER FED DC MOTORS

Classes: 10

Classification of Electric Drives, Basic elements of Electric Drive, Dynamic Control of a Drive system, Stability analysis, Introduction to Thyristor Controlled Drives, Single Phase, Three Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited and D.C Series Motors – Continuous Current Operation – Output Voltage and Current Waveforms – Speed and Torque Expressions – Speed – Torque Characteristics- Problems.

Introduction to Four Quadrant Operation – Motoring Operations, Electric Braking – Plugging, Dynamic and Regenerative Braking Operations. Four Quadrant Operation of D.C Motors by Dual Converters – Closed Loop Operation of DC Motor (Block Diagram Only)

UNIT -	CHOPPER FED DC MOTORS	Classes: 10							
III	CHOPPER FED DC MOTORS								
Single Qua	Single Quadrant, Two Quadrant and Four Quadrant Chopper Fed DC Separately Excited								
and Series	Excited Motors – Continuous Current Operation – Output Voltag	ge and Current							
Wave Form	s – Speed Torque Expressions – Speed Torque Characteristics	– Problems on							
Chopper Fed D.C Motors									
UNIT -	CONTROL OF INDUCTION MOTOR	Classes: 0							
TT 7		Classes: 9							

Induction Motor Stator Voltage Control and Characteristics. AC Voltage Controllers – Waveforms – Speed Torque Characteristics - Stator Frequency Control and Characteristics. Voltage Source and Current Source Inverter - PWM Control – Comparison of VSI and CSI Operations – Speed Torque Characteristics – Numerical Problems on Induction Motor Drives – Closed Loop Operation of Induction Motor Drives (Block Diagram Only) – Principles of Vector Control Static Rotor Resistance Control – Slip Power Recovery – V/f control of Induction Motor – Their Performance and Speed Torque Characteristics – Advantages- Applications – Problems

Separate Control & Self Control of Synchronous Motors – Operation of Self Controlled Synchronous Motors by VSI and CSI Cyclo converters. Load Commutated CSI Fed Synchronous Motor – Operation – Waveforms – Speed Torque Characteristics – Applications – Advantages and Numerical Problems – Closed Loop Control Operation of Synchronous Motor Drives (Block Diagram Only), Introduction to variable frequency control.

Text Books:

1. Power semiconductor controlled drives, G K Dubey, Prentice Hall, 1995.

2. Modern Power Electronics and AC Drives, B.K.Bose, PHI, 2002.

Reference Books:

1. Power Electronics, MD Singh and K B Khanchandani, Tata McGraw-Hill Publishing company, 2008.

2. Power Electronic Circuits, Devices and applications, M.H.Rashid, PHI, 2005.

3. Electric drives Concepts and Applications, Vedam Subramanyam, Tata McGraw Hill Publications,

2nd Edition, 2011.

Course Outcomes:

The student should be able to:

- Identify the choice of the electric drive system based on their applications
- Explain the operation of single and multi quadrant electric drives
- Analyze single phase and three phase rectifiers fed DC motors as well as chopper fed DC motors
- Analyze the speed control methods for AC-AC & DC-AC converters fed to Induction motors with closed loop, and open loop operations
- Analyze the speed control methods for AC-AC & DC-AC converters Synchronous motors with closed loop, and open loop operations.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	3	2	2		3						3	3
CO 2	3	1	1	2	2		2						3	3
CO 3	3	2	2	2	2		2						3	3
CO4	3	2	3	2	2		2						3	3
CO5	3	2	3	2	2		2						3	3
AVG	3	1.8	2.4	2	2		2.2						3	3

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

AUTONOMOUS | ACCREDITED BY NAAC |

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o)N

Course Code Category Hours / Week Credits Maximum Marks												
	ue	PROFESSIONA						-	1			
20PE0213	3	L	L	Т	P	С	CIA	SEE	Total			
201 20210		ELECTIVE	3	-	-	3	40	60	100			
Contact		Tutorial Classe	s· 0	Pra	ctical	Classes: 0	Tot	tal Classes: 48				
Classes: 4			3 • 0	114	cticai		100		cs. 10			
OBJECTIV												
The course should enable the students to:												
• Understand the basic concepts of HVDC transmission systems and various												
converters.												
• Discus reactive power control in HVDC systems.												
Analyse power flow in AC-DC systems.												
UNIT-I	BA	SIC CONCEPTS						Cla	sses: 10			
•	HV	ALYSIS OF HVD DC converters: Ch f 6 Pulse and 12 Pu	oice of	conve	erter co	onfiguration	•	s of Gra				
		characteristics of 6 Pulse and 12 Pulse converters, cases of two 3 phase converters in star- star mode and their performance.										
UNIT-III CONVERTER AND HVDC SYSTEM CONTROL Classes: 10												
UNIT-III	CO	•	HVDC	SYST	TEM (CONTROL		Cla				
HVDC syst firing angle Power cont	t em cont rol i	•	of DC inction Effect	link o angle	contro	l, converters l.	s control	charact	sses: 10 eristics,			
HVDC syst firing angle Power cont	t em cont rol i DC 1	EXAMPLE 1 Control: Principal rol, current and ext n HVDC systems:	of DC inction Effect	link of sou	contro contro irce in	l, converters l. ductance on	s control	em, star	sses: 10 eristics,			
HVDC syst firing angle Power cont stopping of UNIT-IV Reactive Po control strat	tem cont rol i DC l RE ower	EXAMPLE 1 Control: Principal rol, current and ext n HVDC systems: link, power control.	of DC inction Effect CON e Powe strateg	t link of angle of sou TROL er Req	contro contro irce in AND juirem	l, converters l. ductance on FILTERS ents in ste	s control the syst	charact em, star Cl e, conv	sses: 10 ceristics, ting and asses: 9 entional			

Power flow Analysis: Modeling of DC links, DC network, DC converter-controller equations, solution of DC load flow, PU System for DC quantities, solution of AC-DC power flow, simultaneous method, sequential method.

Text Books:

- 1. K RPadiyar, "HVDC Power Transmission Systems: Technology and system Interactions", New Age International (P) Limited, 1st Edition, 1999.
- 2. SRao, "EHVAC and HVDC Transmission Engineering and Practice", PHI, 3rd Edition, 1990.

Reference Books:

- J Arrillaga, "HVDC Transmission", Institution of Electrical Engineers, 1st Edition, 1998.
- 2. EWKimbark, "Direct Current Transmission ", John Wiley & Sons, 1st Edition, 1971.
- E Uhlmann, "Power Transmission by Direct Current", B SPublications, 1st Edition, 1975.

Course Outcome:

At the end of the course, a student will be able to:

- 1. Develop a foundational understanding of basic concepts in HVDC transmission, demonstrating the ability to analyze, comprehend, and apply key principles for efficient and reliable high-voltage direct current transmission systems.
- 2. Attain proficiency in the analysis of HVDC converters, showcasing the ability to understand, model, and evaluate the performance of high-voltage direct current converters for effective power transmission.
- 3. Master reactive power control and filters, showcasing the ability to design, implement, and optimize systems for efficient management of reactive power.
- 4. Master control techniques for converters and HVDC systems, demonstrating the ability to design, implement, and optimize control strategies
- 5. Gain expertise in power flow analysis for AC/DC systems, demonstrating the ability to analyze and optimize electrical networks to ensure efficient and stable power transmission.

	CO-PO	WIAF	ING											
	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	2	2		2						3	3
CO 2	3	3	3	3	2		2						3	3
CO 3	3	2		2	2		2						3	3
CO4	3	2	1	2	2		2						3	3
CO5	2	2	1	2	2		2						3	3

HIGH VOLTAGE ENGINEERING

Course Code	Category	Hours / Week			Credit s	Maximum Marks			
20PE0210	PROFESSION AL	L	Т	Р	С	CIA	SE E	Total	
	ELECTIVE	3	-	-	3	40	60	100	
Contact Classes: 48	Tutorial Classe	Practical Classes: 0			Total Classes: 48				
-	1								

OBJECTIVES:

To impart knowledge on the following Topics

• Various types of over voltages in power system and protection methods.

• Generation of over voltages in laboratories.

• Measurement of over voltages.

• Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.

• Testing of power apparatus and insulation coordination

UNIT-I	OVER VOLTAGES IN ELECTRICAL POWER	Classes:
UNII-I	SYSTEMS	10

Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages, Corona and its effects – Bewley lattice diagram- Protection against over voltages.

UNIT-II DIELECTRIC BREAKDOWN

Classes: 10

Properties of Dielectric materials - Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown – Conduction and breakdown in pure and commercial liquids, Maintenance of oil Quality – Breakdown mechanisms in solid and composite dielectrics- Applications of insulating materials in electrical equipments.

1							
UNIT-III	GENERATION OF HIGH VOLTAGES AND HIGH	Classes:					
UN11-111	CURRENTS	10					
Generation	of High DC voltage: Rectifiers, voltage multipliers, vandigraf	f generator:					
generation o	f high impulse voltage: single and multistage Marx circuits - g	eneration of					
high AC voltages: cascaded transformers, resonant transformer and tesla coil- generation							
of switching	surges - generation of impulse currents - Triggering and control	l of impulse					

generators.

UNIT-IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

Classes: 9

High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers - Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters – Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

UNIT-VHIGH VOLTAGE TESTING & INSULATION
COORDINATIONClasses: 9

High voltage testing of electrical power apparatus as per International and Indian standards – Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers- Insulation Coordination& testing of cabilitys.

Text Books:

1. S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.

2. E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes Second Edition Elsevier, New Delhi, 2005.

3. C.L. Wadhwa, 'High voltage Engineering', New Age International Publishers, Third Edition, 2010.

Reference Books:

1. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.

 Mazen Abdel – Salam, Hussein Anis, Ahdab A-Morshedy, Roshday Radwan, High Voltage Engineering – Theory &Practice, Second Edition Marcel Dekker, Inc., 2010.
 Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013.

Course Outcome:

At the end of course the student is able to

- 1. Acquire knowledge in overvoltages in electrical power systems, showcasing the ability to analyze, identify, and implement measures to mitigate overvoltage issues for enhanced system reliability.
- 2. Develop an understanding of dielectric breakdown, demonstrating the ability to analyze factors leading to breakdown and implement preventive measures for ensuring electrical insulation integrity. understand Generation, measurement and testing of high voltage.
- 3. Attain proficiency in generating high voltages and currents, showcasing the ability to design, operate, and troubleshoot systems for diverse applications in electrical engineering.
- 4. Master the measurement of high voltages and currents, demonstrating the ability to

employ accurate techniques and instruments for precise analysis and monitoring in electrical systems.

5. Acquire expertise in high voltage testing and insulation coordination, demonstrating the ability to conduct effective tests and ensure optimal insulation design for enhanced electrical system reliability.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2		1	2		3						3	3
CO 2	3	2	1	1	2		2						3	3
CO 3	3	3	2	2	2		2						3	3
CO4	3	2	3	1	3		2						3	3
CO5	3	2	2	2	2		3						3	3
AVG	3	2.2	2	1.4	2.2		2.4						3	3

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o

ADVANCED POWER SYSTEM PROTECTION

Course Code	Category		Hour Wee		Credit s	Maxi	imum N	Marks	
20PE0215	PROFESSIONAL	L	T	P	С	CIA	SEE	Total	
201 E0213	ELECTIVE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Classes: ()	Practical Classes: 0			Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

- Illustrate concepts of transformer protection.
- Describe about the various schemes of over current protection.
- Analyze three stepped distance and carrier protection of transmission lines.
- Outline the concepts of bus bar protection and numerical over current and distance protection.

UNIT - I OVER CURRENT PROTECTION

Classes: 10

Zones of protection: Primary and Backup protection, operating principles and relay construction, time current characteristics, current setting, time setting, over current protective schemes, reverse power or directional relay, protection of parallel feeders, protection of ring feeders, earth fault and phase fault protection, combined earth fault and phase fault protection scheme, phase fault protective scheme directional earth fault relay static over current relays; numerical example for a radial feeder.

UNIT - II | EQUIPMENT PROTECTION

Classes: 10

Types of transformers, phasor diagram for a three Phase transformer, equivalent circuit of transformer, types of faults in transformers, over current protection percentage differential Protection of transformers, Inrush phenomenon, high resistance ground faults in transformers, inter turn faults in transformers, incipient faults in transformers, Phenomenon of over fluxing in transformers, transformer protection application chart; Generator protection: Electrical circuit of the generator, various faults and abnormal operating conditions, stator faults rotor faults, abnormal operating conditions; numerical examples for typical transformer and generator protection schemes

UNIT - III DISTANCE AND CARRIER PROTECTION OF TRANSMISSION LINES Classes: 10

Drawback of over current protection, introduction to distance relay simple impedance relay, reactance relay, mho relays comparison of distance relay, distance protection of a three phase line, reasons for inaccuracy of distance relay reach, three stepped distance protection, trip contact configuration for the three stepped distance protection, three stepped protection of three phase line against all ten shunt faults, impedance seen from relay side, three stepped protection of double end fed lines.

Need for carrier, aided protection, various options for a carrier, coupling and trapping the carrier into the desired line section, unit type carrier aided directional comparison relaying, carrier aided distance schemes for acceleration of zone II, numerical example for a typical distance protection scheme for a transmission line.

UNIT - IV BUSBAR PROTECTION

Classes: 9

Introduction differential protection of bus bars, external and internal fault, actual behaviors of a protective CT, circuit model of a saturated CT, external fault with one CT saturation need for high impedance, minimum internal fault that can be detected by the high ,stability ratio of high impedance bus bar differential scheme, supervisory relay, protection of three phase bus bars, numerical examples on design of high impedance bus bar differential scheme.

UNIT - V

NUMERICAL PROTECTION

Classes: 9

Introduction, block diagram of numerical relay, sampling theorem, correlation with a reference wave least error squared (LES) technique, digital filtering, numerical over current protection, numerical transformer differential protection, numerical distance protection of transmission line.

Text Books:

- 1. P Kundur, "Power System Stability and Control", McGraw-Hill, 1st Edition, 1993.
- Stanley Horowitz, "Protective Relaying for Power System II", IEEE press, New York, 2nd Edition, 2008.
- 3. T SM Rao, Digital Relay, "Numerical relays", Tata McGraw Hill, New Delhi, 1st Edition, 1989.

Reference Books:

- YG Paithankar and S.R Bhide, "Fundamentals of Power System Protection", Prentice-Hall of India, 3rd Edition, 2003.
- 2. Badri Ram, DN Vishwakarma, "Power System Protection and Switchgear", Tata McGraw- Hill Publishing Company,1st Edition, 2002.

Course Outcomes:

At the end of the course, a student will be able to:

- 1. Understand the various schemes of over current protection.
- 2. Understand the concepts of transformer and generator protection.
- 3. Analyse three zone distance and carrier protection of transmission lines.

- 4. Study and analyze of the concepts of bus bar protection
- 5. Study and analyze of numerical over current and distance protection.

CC	CO-PO MAPPING													
	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3		2		2		2						3	3
CO 2	3	2	2		2		2						3	3
CO 3	3	2	2	2	3		2						3	3
CO4	3	2	3	2	2		2						3	3
CO5	3	3	2	2	3		2						3	3
AVG	3	2.2	2.2	2	2.4		2						3	3

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o SMART GRID TECHNOLOGY

Course Code	Category	Ho	ours / W	Veek	Credit s	Maximum Marks			
	PROFESSION	L	Т	Р	С	CIA	SEE	Total	
20PE0216	AL ELECTIVE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Classe	Pra	ctical (Nil	Classes:	Tota	al Class	ses: 48		

OBJECTIVES:

The course should enable the students to:

- Discuss the concepts and design of Smart grid.
- Describe the communication and measurement technologies employed in smart grid.
- Demonstrate the tools for the performance analysis and stability analysis of smart grid.
- Discuss the renewable energy resources and storages integrated with smart grid.

UNIT-I SMART GRID ARCHITECTURAL DESIGNS

Classes: 10

Introduction comparison of power grid with smart grid power system enhancement, communication and standards, general view of the smart grid market drivers, stakeholder roles and function, measures representative architecture, functions of smart grid components, wholesale energy market in smart grid smart vehicles in smart grid.

-		••		-					
	SMART								
	MEASURE	10							
Communication and measurement, monitoring, phasor measurement unit, smart meters,									

wide area monitoring systems, advanced metering infra structure and Google mapping tools.

UNIT - III	PERFORMANCE	ANALYSIS	TOOLS	FOR	SMART	Classes:
	GRID DESIGN					10

Introduction to load flow studies, challenges to load flow in smart grid and weaknesses of the present load flow methods, load flow state of the art: classical, extended formulations, and algorithms.

Load flow for smart grid design, contingencies studies for smart grid.

UNIT - IV	STABILITY ANALYSIS TOOLS FOR SMART GRID	Classes: 9	
-----------	---	------------	--

Voltage stability analysis tools voltage stability assessment techniques, voltage stability indexing application and implementation plan of voltage stability in smart grid, angle stability assessment in smart grid approach of smart grid to state estimation, energy management in smart grid.

UNIT - V RENEWABLE ENERGY AND STORAGE

Classes: 9

Renewable energy resources sustainable energy options for the smart grid penetration and variability issues associated with sustainable energy technology demand response issues electric vehicles and plug-in hybrids, plug in hybrid electric vehicles (PHEV), technology environmental implications, storage technologies, grid integration issues of renewable energy sources.

Text Books:

- 1. James Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons Inc, 2nd Edition, 2012.
- Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", John Wiley & sons inc,1st Edition, 2012.
- 3. FereidoonPSioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient Energy", Academic Press, 2nd Edition, 2012.

Reference Books:

 Clark WGellings, "The smart grid: Enabling energy efficiency and demand response", Fairmont Press Inc, 2nd Edition, 2009.

Web References:

- 1. <u>https://www.researchgate.net</u>
- 2. https://www.aar.faculty.asu.edu/classes
- 3. https://www.facstaff.bucknell.edu/
- 4. https://www.electrical4u.com
- 5. https://www.crectirupati.com

E-Text Books:

- 1. https://www.jntubook.com/
- 2. https://www.freeengineeringbooks.com

Course Outcomes:

The student should have learnt about:

- 1. How to meet the standards for information exchange and for smart metering
- 2. How to preserve data and Communication security by adopting encryption and decryption procedures.
- 3. Monitoring, operating, and managing the transmission and distribution tasks under smart grid environment

- 4. Develop proficiency in stability analysis tools for smart grids, showcasing the ability to employ analytical techniques for ensuring stability.
- 5. Master the integration of renewable energy and storage in smart grids, demonstrating the ability to optimize and manage sustainable energy sources.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1	2	1	3		2						3	3
CO 2	3	1	1	2	3		2						3	3
CO 3	3	2	1	1	3		3						3	3
CO4	3	2	2	2	3		2						3	3
CO5	3	2	2	3	2		3						3	3
AVG	3	1.6	1.3	1.3	2.8		2.4						3	3

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

| AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org ENERGY AUDIT AND MANAGEMENT

Course Code	Category H		ours / V	Veek	Credit s	Maximur			
20PE0217	PROFESSION AL	L	Т	Р	С	CIA	SEE	Tota l	
	ELECTIVE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Classes:	0	Pra	ctical (Nil	Classes:	Tota	Total Classes: 48		

OBJECTIVES:

The course should enable the students to:

I. Outline the principles and objectives of energy management.

II. Illustrate the techniques, procedures, evaluation and energy audit reporting.

III. Devise energy policy planning and implementation.

IV. Analyses energy balance sheet and management information System.

UNIT-I INTRODUCTION TO ENERGY AUDIT

Classes: 10

Energy situation-World and India, Energy Consumption, Conservation, Codes, Standards and Legislation. Energy Audit-Definitions, Concept, Types of Audit, Energy Index, Cost Index, Pie Charts, Sankey Diagrams, Load Profiles, Energy Conservation Schemes. Measurements in Energy Audits, Presentation of Energy Audit Results.

UNIT - II	ENERGY EFFICIENT MOTORS AND POWER FACTOR	Classes: 10
	IMPROVEMENT	Classes. 10

Energy Efficient Motors, Factors Affecting Efficiency, Loss Distribution, Constructional Details, Characteristics – Variable Speed, Variable Duty Cycle Systems, RMS Hp, - Voltage Variation – Voltage Unbalance – Over Motoring-Motor Energy Audit. Power Factor-Methods of Improvement, Power factor with Non Linear Loads.

UNIT - III	ENERGY AUDIT INSTRUMENTS	Classes: 10						
Instruments: Instruments for audit and monitoring energy and energy savings, types and								
accuracy.								
UNIT - IV	ENERGY BALANCE AND MIS	Classes: 9						

Energy balance: First law of efficiency and second law of efficiency, facility as an energy system, methods for preparing process flow, materials and energy balance diagram, identification of losses, improvements.

MIS: Energy balance sheet and management information system (MIS) energy modeling

UNIT - V DEMAND SIDE MANAGEMENT	Classes: 9
Introduction to DSM, Concept of DSM, Benefits of DSM, Different Technic	ues of DSM
Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day	y Models for
planning. Load Management, Load Priority Technique, Peak Clipping, P	eak Shifting
Valley Filling, Strategic Conservation, Energy Efficient Equipment. Man	agement and
Organization of Energy Conservation Awareness Programs.	
Text Books:	
1. W R Murphy, GMckay, "Energy Management", Butterworth's, 2 nd Editio	on, 2009.
2. CBSmith,"Energy Management Principles", Pergamum Press, 2 nd Edition,	, 1981.
3. I G C Dryden, "Efficient Use of Energy", Butterworth's, 1st Edition, 1982	2.
4. AV Desai, "Energy Economics", Wiley Eastern, 1 st Edition, 1991.	
Reference Books:	
1. DA Reay, "Industrial Energy Conservation", Pergamum Press, 1st Edition	, 1977.
2. W C Turner, , "Energy Management Handbook, John Wiley and Sons, 6^{t}	^h Edition,
2006.	
3. L C Witte, P S Schmidt, D R Brown, "Industrial Energy Management and	ļ
Utilization",. Hemisphere Publication, Washington, 1st Edition, 1988.	
Course Outcomes:	
At the end of the course a student will be able to:	
1. Conduct energy auditing and evaluate energy audit results	
2. Analyze the losses of energy efficient motors for improvement of efficient	cy and powe
factor.	
3. Understand and analyze the accuracy of various Instruments for energy	audit and it
monitoring for better energy savings.	
4. Analyze energy balance sheet and management information System study.	through cas
5. Understand the concept of Demand Side management and analy	

5. Understand the concept of Demand Side management and analyze Different Techniques of DSM

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	2	2		3						3	3
CO 2	3	1	2	2	2		3						3	3
CO 3	3	2	2	2	3		2						3	3
CO 4	3	1	3	2	2		3						3	3
CO 5	3	2	2	2	2		3						3	3
AVG	3	2.6	2	2									3	3

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY | AUTONOMOUS | ACCREDITED BY NAAC |

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org **DIGITAL IMAGE PROCESSING**

Course (Code	Category	Но	urs / V	Veek	Credit s	Maxi	mum N	larks		
20PE0413 PROFESSIONAL L T P C C								SEE	Tota 1		
		ELECTIVE	3	0	0	3	40	60	100		
Conta Classes		Tutorial Practical Classes: Nil Total							Classes: 48		
 To I To i Ima To a To A UNIT-I IMAGI samplin operation IMAGI 	should Perform i Ilustrate ge transf unalyze p Apply va INTRO E FUNI g & qu ons, Logi E TRA	enable the students to image manipulations and basic operations like – forms and restoration te beseudo and full color in rious morphological op DUCTION DAMENTALS: Func- uantization, some ba cal operations, Spatial NSFORMS: 2D-DFT e Transform, Haar-Tra	nd dif Enha echnic nage j perato lamer sic r opera G, W	ncemo proces ors on ntal st elation ttions, Yalsh	ent, sen n imag sing te images teps i nships Trans	gmentatio echniques. s n Image between form, Ha	n, comj Proce pixels	Classing, s, Arit d Trar	n, sses: Image hmetic nsform,		
properti UNIT-II		age transforms. E ENHANCEMENT:						Clas 10	sses:		
Spatial spatial I Basics o and fre	Filtering Enhancer of filterin quency	transformation funct g, Smoothing spatial nent methods. ng in frequency domain domains, Image smoo g frequency domain filt	filter , Cor othing	rs, Sha respon g usin	arpenin Idence g frec	ng spatia between juency do	filtering	dament s, Com	bining spatial		
UNIT-III	sharpening using frequency domain filters, Homomorphic filtering. UNIT-III IMAGE RESTORATION Classes: 10										
Noise o	nly-spati tion fun	ion/Restoration model, ial filtering - mean, or ction, Inverse filterin	der- s	tatistio	c and a	adaptive f	ilters. I	Estimat	ing the		

UNIT-IV	IMAGE COMPRESSION	Classes: 9
coding,	cation of redundancy in Images, Image Compression models, Arithmetic coding, Dictionary based compression, bit-plane coding oding, Fidelity Criteria, JPEG 2000.	-
UNIT-V	IMAGE SEGMENTATION AND COLOR IMAGE PROCESSING	Classes 09
thresho Color i	on of discontinuities- Point, line and edge Detection. Thresholding, adaptive thresholding. Region based Segmentation. mage fundamentals - RGB, HSI models, conversions, Pseudo (ing, Color transformations.	0 0
Text Book	8:	
Edu	ael C. Gonzalez & Richard E. Woods, Digital Image Processi cation, 4 th Edition, 2018. l K.Jain, Fundamentals of Digital Image processing, Prentice Hall, 2	0
	ICE BOOKS:	
Mc	ayaraman, S Esakkirajan, T Veerakumar, Digital Image Proce Graw Hill Education, Second Edition, 2020. ula Singh, Digital Image Processing with MATLAB & LabVIE 9.	-
	OUTCOMES:	
 CO ima CO 	essful completion of this course, the students will be able to:1: Apply various transformations on images by analyzing basic or ages.2: Apply various image enhancement techniques in spatial an nains.	-
fun • CO in i • CO	 3: Apply restoration techniques based on noise models and ction to restore the images, pertaining to health and societal applica 4: Analyze various coding techniques for compression to reduce r mages. 5: Analyze various segmentation techniques on images for societal Analyze various color models for different types of images. 	tions. edundancies

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2		2	3	-	-	-	-	-	-	-	3	3
CO 2	3	2	2	2	3	-	-	-	-	-	-	-	3	3
CO 3	3	2		2	3	2	2	-	-	-	-	-	3	3
CO	3	3	2	2	2	2	2	2	-	-	-	-	3	3

ELECTRICAL AND HYBRID VEHICLES

Course	Code	Category	Но	urs / V	Veek	Credit s	Maxi	mum N	larks
20PE02	218	PROFESSIONAL	L	Т	Р	С	CIA	SEE	Tota 1
		ELECTIVE	3	0	0	3	40	60	100
Conta	ict	Tutorial Classes:	Pr	actica	l Clas	ses: Nil	Tote	l Class	505. 18
Classes		Nil	11	attica		565.111	1017		JUS. 70
OBJECTI									
The course	e should	enable the students :							
 Το ι 	understau	nd upcoming technolog	y of l	nybrid	syster	n			
• To u	understaı	nd different aspects of c	drives	applie	cation				
• Lea	rning the	e electric Traction							
UNIT-I	HISTC	ORY OF HYBRID AN	D EI	ECT	RIC V	EHICLE	ŻS	Clas	sses:
Social and	environ	mental importance of	hybri	d and	electr	ic vehicle	es Impa	ct of r	nodern
drive-trains	on ene	ergy supplies, Basics of	of ve	hicle	perfor	mance, v	ehicle]	power	source
characteriza performanc		ransmission characteris	stics,	mathe	matica	al models	to des	scribe	vehicle
UNIT-II	BASIC	C CONCEPT OF HYB	RID	TRAG	CTIO	N		Clas 10	sses:
Introduction	n to vari	ous hybrid drive-train	topol	ogies	Power	flow con	ntrol in	hybrid	drive-
train topolo	gies Fue	el efficiency analysis. B	asic o	concep	ot of h	ybrid tract	tion, I	ntroduc	tion to
various hył	orid drive	e-train topologies Pow	ver flo	ow con	ntrol i	n hybrid o	drive-tra	ain top	ologies
Fuel efficie	ncy anal	ysis.							
UNIT-III	ELEC	FRIC COMPONENT	S						sses:
								10	
		tric components used in							
control of I	C Moto	or drives, Configuration	n and	d cont	rol of	f Introduc	ction N	lotor o	lrives,

control of DC Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance, Motor drives, drive system efficiency

UNIT-IV	INTERN	AL C	OMBU	STION	ENGIN	NE				Class	es: 10	
Matching propulsion communica		ing the	e powe	r electr				•	,	-		
UNIT-V	ENERGY	Y MAI	NAGE	MENT						Class	es: 09	
	in to energy ion of differ	rent en	ergy m	anagem	ent strate	egies Co	omparis					
Reference		<u>s impr</u>				ergy stre						
Dev 2. Sin	e -Ramirez, vices", Sprin ew-Chong tching Pow	nger. Tan,	Yuk-M	ing La		-	-					
	urse Outco		lveners									
	dents will u		and the	import	ance of l	whrid a	nd elec	tric veh	icles so	cially a	nd	
	vironmental			-		•				clarly a	nu	
	dents will le	-	-		-				power	flow, a	nd	
	luate fuel e						1		1			
	dents will g			•	-	-		ling ele	ctric co	mponei	nts	
	DC motors											
	dents will b									-	es,	
	ect energy s	-		-				-	-			
	dents will ectiveness, a		-			-	ni stre	negles,	comp	are in	eir	
CO-PO M			aryze m	npreme		53 uc 5.						
	02 PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	1 2	1									3	3
3		1									3	3
3	1 2											U U
3	1 2	1									3	3

CO5

AVG

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

SIMULATION LABORATORY - I

Course Code	Category	Hou	rs /		Credi	Ma	ximum I	Marks
		Week			t			
20PC0222	PROFESSIONAL	L	T	Р	C	CI A	SEE	Total
	CORE	-	-	3	1.5	40	60	100
Contact Classes: Nil	Tutorial	Prac	tica	l Cla	sses: 48	To	tal Clas	ses: 48
	Classes:00							
OBJECTIVES:		•						
• To address the network using s	oblem oriented knowle underlying concepts & software tools. formulate solutions to p	appro	ach	les be	hind anal	lysis of	power sy	
LIST OF EXPERIMENT	TS S							

WEEK – l	Formation of Bus Admittance and Impedance Matrices and Solution of Networks
WEEK-2	Load Flow Analysis - I : Solution of Load Flow And Related Problems Using Gauss- Seidel Method
WEEK-3	Load Flow Analysis - II: Solution of Load Flow and Related Problems Using Newton-Raphson and Fast-Decoupled Methods
WEEK -4	Load flow analysis of a given power system with STATCOM
WEEK -5	Fault Analysis(LG, LLG, LLLG & LLL Faults)
WEEK -6	Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
WEEK -7	Transient Stability Analysis of Multi machine Power Systems
WEEK -8	Transient analysis of single machine infinite bus system with STATCOM
WEEK-9	Electromagnetic Transients in Power Systems
WEEK-10	Load – Frequency Dynamics of Single- Area and Two-Area Power Systems
WEEK-11	Economic Dispatch in Power Systems.

Reference Books:

1.A.K.Ray&K.M.Bhurchandi "Advanced Microprocessor and Peripherals", 2nd Edition TMH,2012

2.MSP430 microcontroller basics. John H. Davies, Newnes Publication, 1st

Edition, 2008.

Web References:

1.http://www.nptel.ac.in/downloads/106108100

2.http://www.the8051microcontroller.com/web-references

Outcomes: After completion of course the student can able to

1. Simulate the concepts & approaches behind analysis of power system network matrices

using MATLAB/Simulink.

- 2. Simulate the methods of load flow analysis using MATLAB/Simulink.
- 3. To formulate solutions to problems relevant to power system using software tools using MATLAB/Simulink.
- 4. Simulate the methods of fault analysis using MATLAB/Simulink.
- 5. Simulate the methods of transient stability analysis using MATLAB/Simulink.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO 1	3	3	2	3	3	1	1		2	2				
CO 2	3	3	2	3	3	2	1		2	2				
CO 3	3	3	2	3	3	2	2		2	2				
CO 4	3	3	3	2	2	1	1		1	2				
CO 5	3	3	3	2	2	1	1		1	2				
AVG	3	3	2.4	2.6	2.6	1.4	1.2		1.6	2				

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org SIMULATION LABORATORY - II

Course Code Category Hours / Credi **Maximum Marks** Week t С L Т Р SE CI Total PROFESSIONAL E Α 20PC0223 CORE 3 1.5 40 60 100 _ _ **Total Classes: 48 Contact Classes: Nil Tutorial Classes: Practical Classes:** 48 **OBJECTIVES:** To present a problem oriented knowledge of power system analysis methods. To address the underlying concepts & approaches behind analysis of power system network using software tools. To identify & formulate solutions to problems relevant to power system using software tools. LIST OF EXPERIMENTS Formation of y- bus using singular transformation method with and without mutual WEEK-L coupling Formation of 'Y- BUS' by inspection method Z-bus building algorithm WEEK-2 WEEK-3 Determination of power angle curve for non- salient pole synchronous machines Determination of power angle curve salient pole synchronous machines WEEK -4 Program for swing curve when the fault is cleared WEEK -5 WEEK -6 Swing curve for sustained fault and critical clearing angle & time Formation of jacobian for the system not exceeding 4 buses (no pv buses) in polar **WEEK -7** coordinates WEEK -8 Determination of bus currents, bus power & line flows for a specified system voltage (bus) profile WEEK-9 Formation for symmetric π /T configuration for Verification of AD-BC=1, Determination of Efficiency and Regulation. Formation of Jacobian for a System not Exceeding 4 Buses (No PV Buses) in Polar WEEK-10 Coordinates **Reference Books:** 1.A.K.Ray&K.M.Bhurchandi "Advanced Microprocessor and Peripherals", 2nd Edition TMH,2012

2. MSP430 microcontroller basics. John H. Davies, Newnes Publication, 1st Edition, 2008.

Web References:

1.http://www.nptel.ac.in/downloads/106108100

2.http://www.the8051microcontroller.com/web-references

Outcomes: After completion of course the student can able to

- Simulate the concepts & approaches behind analysis of power system network matrices using MATLAB/Simulink.
- Simulate the methods of swing curve using MATLAB/Simulink.
- Simulate the methods of salient pole synchronous machines using MATLAB/Simulink
- To formulate solutions to problems relevant to power system using MATLAB/Simulink

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	3	3	1	1		2	2				
CO 2	3	3	2	3	3	2	1		2	2				
CO 3	3	3	2	3	3	2	2		2	2				
CO 4														
CO 5														
AVG	3	3	2	3	3	1.6	1.3		2	2				

RENEWABLE ENERGY SOURCES

V Semester	: Comn	non for all Branches							
Course (Code	Category	Ног	irs / W	Veek	Credit s		Maxim Marl	
200	E0201	OPEN ELECTIVE	L	Т	Р	С	CIA	SE E	Tot al
			3	-	-	3	40	60	100
Contact C 48	lasses:	Tutorial Classes: Nil	Pra	actical	l Class	ses: Nil	Tota	l Class	es: 48
OBJECTIV	/ES:								
The course	should	enable the students	to:						
It introduces	s solar e	nergy its radiation, co	ollection	n, stora	age an	d applicat	ion. It a	lso	
introduces t	he Wind	l energy, Biomass ene	ergy, G	eother	mal ei	nergy and	ocean e	nergy a	IS
alternative e	energy so	ources.							
UNIT-I	PRIN	CIPLES OF SOLAR	RAD	IATIC)N			Classe	es: 10
the solar co surface, inst SOLAR	onstant, cruments ENERG n of co SOLA	ergy option, Environmextraterrestrial and technological for measuring solar measuring solar measuring collector of the solar structure of	errestria adiatic : Fla rs, ori	al sola on and t pla entatic	ur radi sun sh te an on and	ation, sola nine, solar nd conce d thermal	ar radia radiatic entrating analys	tion on on data. g colle	titled ectors, anced
		ENERGY			ONIC			1. 0.	
		STORAGE AND						-	-
technique, s		tified storage, solar	ponus.	Solai	Аррі	ications-		ating/0	bonng
• ·		energy conversion.							
5 0 1		Sources and poter	tiala	horizo	ntal	and worth	aal avi	a wind	1milla
		teristics, Betz criteria	-	nonze	mai	and veru	cal axi	S WIIIC	
UNIT-III	BIO-N							Classe	
		onversion, Anaerobic	laarahi	a diga	ation	tupos of I			
-		haracteristics of bio-g		-		• •	-	-	-
And econom		-	as, util	izatioi	1 101 0	ookiiig, I.	C.Engili	ie opera	.0011
	me aspe	010.							

UNIT-I	VG	EOTH	ERMA	L EN	ERGY	& OCE	AN EN	ERGY		Cla	asses: 0	9
GEOTH	ERMA	L ENE	RGY:	Resou	rces, ty	pes of w	ells, me	thods c	of harne	ssing th	ne energ	зy,
potential	l in Ind	ia.										
OCEAN	ENER	RGY: O	TEC, I	Princip	les utili	ization, s	etting o	f OTE	C plants	, therm	odynam	nic
cycles.	Tidal a	nd way	ve ener	rgy: Po	otential	and cor	version	techni	ques, n	nini-hyd	lel pow	/er
plants, a	nd thei	r econo	mics.									
UNIT-V	7 D	IRECT	ENE	RGY (CONVI	ERSION				Cla	asses: 0	9
Need for	r DEC,	Carnot	cycle,	limitat	ions, p	rinciples	of DE	C.				
Text Bo	oks:											
1. Non-0	Conven	tional H	Energy	Source	es by G	.D. Rai,	Khanna	Publisł	ners			
2. Renew	vable E	Energy l	Resour	ces – T	widell	& Wier, 0	CRC Pro	ess(Tay	lor & F	rancis)		
Referen	ce Boo	ks:										
1. Renew	vable e	nergy r	esourc	es by T	'iwari a	nd Ghos	al, Naro	sa.				
2. Renew	vable E	Energy [Fechno	ologies	by Ran	nesh & K	umar, N	Varosa.				
3. Non-O	Conven	tional H	Energy	System	ns by K	Mittal,	Wheeler					
4. Rene	wable	energy	sourc	es and	d emer	ging tec	hnologi	es byI	D.P.Kotl	nari,K.C	C.Singh	al,
PHI1.												
Course	Outcon	mes:At	the en	d of th	e cour	se, a stu	lent wi	ll be ab	le to:			
1. U	Jnderst	and the	e Elect	ric pov	ver gen	eration f	rom rer	newable	e energy	source	es as su	ın,
ν	vind an	id ocear	1.									
2. A	Analyze	e the ge	neratio	n princ	iples a	nd opera	tion of v	ariety of	of sourc	es of er	nergy	
3. U	Jnderst	and Bio	o-Conv	resion	of ener	gy storag	ge and e	conom	у			
4. <i>A</i>	Analyze	e Geoth	ermal	Energy	& Oce	an Energ	y					
5. U	Jnderst	and the	neces	sity and	1 princi	ples of d	irect ene	ergy co	nversio	ıs.		
				-								
CO-PO	MAPH	PING										
PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	DO12	DC

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1	2	1										
CO 2	3	1	1	1										
CO 3	3	1	2	1										
CO 4	3	1	1	1										
CO 5	3	1	1	1										
AVG	3	1	1.4	1										

SRI VENKATESA PERUMA COLLEGE OF ENGINEERING & TECHNOLOG

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.o

INTRODUCTION TO POWER ELECTRONICS

Course Code	Category	Hou	rs / V	Veek	Credits	Maximum Marks			
20OE020	OPEN	L	Т	Р	С	CIA	SEE	Tota l	
2	ELECTIVE	3	0	0	3	40	60	100	
Contact Classes:48	Tutorial Classes	:0	Pra	ctical	Classes: 0	Tota	es: 48		

OBJECTIVES:

The course should enable the students to:

The objectives of the course are to make the student learn about

- the basic power semiconductor switching devices and their principles of operation.
- the various power conversion methods, controlling and designing of power converters.
- the applications of Power electronic conversion to domestic, industrial, aerospace, commercial and utility systems etc.
- the equipment used for DC to AC, AC to DC, DC to Variable DC, and AC to Variable frequency AC conversions.

UNIT-I POWER SEMI CONDUCTOR DEVICES

Classes:1

4

Semiconductor Power Diodes, Classification of Switching Devices Based on Frequency and Power Handling Capacity-BJT – Power Transistor - Power MOSFET – Power IGBT -Thyristors – Silicon Controlled Rectifiers (SCR's) – Basic Theory of Operation of SCR – Static Characteristics – Turn On and Turn Off Methods- Dynamic Characteristics of SCR -Two Transistor Analogy – Triggering Circuits– Snubber Circuits.

UNIT - II	PHASE CONTROLLED CONVERTERS	

Phase Control Technique – Single Phase Line Commutated Converters – Mid Point and Bridge Connections – Half Controlled Converters, Fully Controlled Converters with Resistive, RL Loads and RLE Load– Derivation of Average Load Voltage and Current – Active and Reactive Power Inputs to the Converters without and with Free-Wheeling Diode, Effect of Source Inductance – Numerical Problems. Three Phase Line Commutated Converters – Three Pulse Converters – Mid Point and Bridge Connections - Average Load Voltage with R and RL Loads – Effect of Source Inductance.

UNIT – III	CHOPPERS AND REGULATORS	Classes:1 3
Down and S RLE Loads-	n Circuits – Time Ratio Control and Current Limit Control Strate tep-up Choppers Derivation of Load Voltage and Currents with Step Up Chopper – Load Voltage Expression– Problems. Stud uck-Boost regulators.	R, RL and
UNIT - IV	INVERTERS	Classes:1 3
Bridge Inver – Single Pha Reduction T	ingle Phase Inverter – Basic Series Inverter – Basic Parallel Capaci ter – Waveforms – Simple Forced Commutation Circuits for Bridg se Half and Full Bridge Inverters-Pulse Width Modulation Contro echniques-Voltage Control Techniques for Inverters – Numerical VSI in 120 ⁰ Mode of Conduction.	ge Inverters l-Harmonic
UNIT - V	AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS	Classes:1
RMS Load V Problems - T Cyclo Conv Load (Princi (Principle of Text Books: 1. Powe (India) H 2. Powe	r Electronics, M. D. Singh and K. B. Khanchandani, Mc Graw Hill Pvt. Ltd., 2 nd Edition, 2007, 23 rd Reprint 2015. er Electronics: Circuits, Devices and Applications, Muhammad , 3 rd Edition, 2014, 2 nd Impression 2015.	Numerical d Inductive loconverter l Education
2016. 2. Power El 3. Power I OXFORD	ectronics, K. R. Varmah, Chikku Abraham, CENGAGE Learning, ectronics, P. S. Bimbhra, Khanna Publishers, 2012. Electronics: Devices, Circuits, and Industrial Applications, V. F Jniversity Press, 1 st Edition, 2005, 12 th Impression 2012.	
Basic opUnderstaAnalyze	come: hrough this course, the student acquires knowledge about: erating principles of power semiconductor switching devices. nd operation and analysis of power electronic converter circuits. operation and analysis of choppers and regulator circuits. nd operation and analysis of inverter circuits.	

• Understand operation and analysis of AC voltage controllers, and cycloconverters and their control.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	3		1	1					1		
CO 2	3	2	3	3		2	1					1		
CO 3	2	1	1	1		1	1					1		
CO 4	3													
CO 5	3													
AV G	2. 6	1. 6	2	2.3		1.3	1					1		

ELECTRICAL POWER GENERATION SYSTEMS

Course Code	Category	Hou	Hours /Week			Maximum Marks			
					S				
		L	Т	P	С	CIA	SE	Total	
20OE0203	OPEN						Ε		
	ELECTIVE	3	0	0	3	40	60	100	
Contact Classes:	Tutorial	I	Practica	l Cla	sses: Nil]	[otalC]	lasses:48	
48	Classes:0								

OBJECTIVES:

Students will try to learn:

The fundamental concepts of power generation and gain knowledge about the different renewable and non-renewable energy sources.

The construction and working principle of thermal, hydro-electric, nuclear and gas power plants. The key aspects in solar, wind, bio gas and geo thermal power energy systems and analyze their environmental aspects in the present-day scenario to obtain clean energy.

UNIT-I: THERMAL & HYDRO POWER GENERATING SYSTEMS

Thermal Power Generating Systems:

Block Diagram of Thermal Power Station (TPS) showing paths of Coal, Steam, Water, Air, Ash and Flue Gasses - Brief Description of TPS Components: Economizers, Boilers, Super Heaters, Turbines, Condensers, Chimney and Cooling Towers.

Hydro Power Generating Systems: Selection of Site, Classification, Layout, Description of Main Components.

UNIT-II NUCLEAR POWER GENERATING SYSTEMS

Nuclear Power: Nuclear Fission and Chain Reaction.- Nuclear Fuels.- Principle of Operation of Nuclear Reactor.-Reactor Components: Moderators, Control Rods, Reflectors and Coolants.-Radiation Hazards: Shielding and Safety Precautions.- Types of Nuclear Reactors and Brief Description of PWR, BWR and FBR.

UNIT –III SOLAR & WIND POWER GENERATING SYSTEMS

Solar Power Generation: Role and Potential of Solar Energy Options, Principles of Solar Radiation, Flat Plate and Concentrating Solar Energy Collectors, Different Methods of Energy Storage – PV Cell- V-I Characteristics.

Wind Power Generation: Role and potential of Wind Energy Option, Horizontal and VerticalAxis Wind Mills- Performance Characteristics- Power- Speed & Torque- Speed Characteristics.UNIT-IVBIOGAS POWER GENERATING SYSTEMS

Biogas Power Generation: Principles of Bioconversion, Types of Biogas Digesters – Characteristics of Bio-Gas- Utilization- Economic and Environmental Aspects.

UNIT-V GEOTHERMAL POWER GENERATING SYSTEMS

Geothermal and Ocean Power Generation: Principle of Geothermal Energy Methods of Harnessing-Principle of Ocean Energy-Tidal and Wave Energy- Mini Hydel Plants- Economic Aspects.

TEXT BOOKS:

1. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai & Co. Pvt. Ltd., 1999.

2.Principles of Power Systems by V.K Mehta and Rohit Mehta S.CHAND& COMPANY LTD., New Delhi 2004.

REFERENCE BOOKS :

1. Electric Power Generation Distribution and Utilization by C.L Wadhwa, New Age International (P) Ltd., 2005.

2. Non Conventional Energy Sources by G.D. Rai, Khanna Publishers, 2000.

COURSE OUTCOMES: Upon successful completion of the course, students should be able to

- 1. Understand the Thermal & Hydro Power Generating Systems.
- 2. Analyze the generation principles and operation of Solar & Wind Power Generating Systems.
- 3. Understand Bio-Conversion of energy storage and economy
- 4. Analyze Biogas Power Generating Systems.
- 5. Understand the necessity Geothermal Energy & Ocean Energy.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1		1										
CO 2	3	2	1	1										
CO 3	3	1	1	2										
CO 4	3	3	1	1										
CO 5	3	2	2	2										
AVG	3	1.8	1.2	1.4										

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

INTRODUCTION TO HIGH VOLTAGE ENGINEERING

Course Code	Category		lours Weel		Credits			Maximum Marks
	OPEN	L	Т	P	С	CIA	SEE	Total
20OE020	04 ELECTIV E	3	-	-	3	40	60	100
Contact Classes 48		s: 0			actical isses: 0		<u> </u>	Total Classes: 48
OBJECTIVES:								
To impart knowle	edge on the following	Торі	cs					
 Various types o 	of over voltages in pow	/er sy	/sten	n and	d protection	n metho	ds.	
 Generation of o 	over voltages in laboration	tories	5.					
• Measurement o	f over voltages.							
• Nature of Break	kdown mechanism in s	solid,	liqu	id ar	nd gaseous	dielect	rics.	
• Testing of power	er apparatus and insula	ation	coor	dina	ition			
UNIT-I	OVER VOLTAGE POWER SYSTEM		I EL	ECT	FRICAL			Classes:
Causes of over v	oltages and its effects	on p	owe	er sy	stem – Lig	, htning,	switch	ing surges and temporary ov
1, 0	and its effects - Bewl	ev la	ttice	diaa	rom Drote	ction a	painst c	over voltages.
voltages, Corona	and its checks $=$ Dewi	e, 1a	lice	ulag	giann- r roic	cuon u	Samor	8
UNIT-II Properties of Di	DIELECTRIC BR	EAK Gaseo	XDO ous	WN brea	kdown in	unifor	n and	Classes: 1 non-uniform fields – Coror
UNIT-II Properties of Di discharges – Vac	DIELECTRIC BR electric materials - (uum breakdown – Cor Breakdown mechani	EAk Gaseo nduct sms	CDO ous ion a in s	WN brea and b olid	kdown in oreakdown and comp	unifori in pure posite c	n and	Classes: non-uniform fields – Coror ommercial liquids, Maintenan
UNIT-II Properties of Di discharges – Vact of oil Quality –	DIELECTRIC BR electric materials - (uum breakdown – Cor	EAk Gaseo nduct sms F HI	CDO ous ion a in s	WN brea and b olid	kdown in oreakdown and comp	unifori in pure posite c	n and	Classes: 1
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H	DIELECTRIC BR electric materials - Cor uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect	EAK Gaseo nduct sms F HI S tifiers	CDO ous ion a in s GH	WN brea and t olid VO	kdown in oreakdown and comp LTAGES e multiplie	uniforn in pure bosite c AND ers, van	n and and cc lielectri	Classes: non-uniform fields – Coror ommercial liquids, Maintenan cs- Applications of insulatir Classes: generator: generation of hig
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H	DIELECTRIC BR electric materials - Cor uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect	EAK Gaseo nduct sms F HI S tifiers	CDO ous ion a in s GH	WN brea and t olid VO	kdown in oreakdown and comp LTAGES e multiplie	uniforn in pure bosite c AND ers, van	n and and cc lielectri	Classes: non-uniform fields – Coror ommercial liquids, Maintenan cs- Applications of insulatir Classes:
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res	DIELECTRIC BR electric materials - G uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect single and multista onant transformer and	EAK Gaseo nduct sms F HI S tifier age	COUS COUS COUS COUS COUS COUS COUS COUS	WN brea and t olid VO	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation	unifori in pure posite c AND ers, van generati	n and and cc lielectri digraff on of	Classes: non-uniform fields – Coror ommercial liquids, Maintenan cs- Applications of insulatir
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res	DIELECTRIC BR electric materials - Co uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect single and multista onant transformer and ring and control of imp	EAK Gased nduct sms F HI S tifiers age d tesl oulse	CDO ous ion a in s GH s, vc Marz la co gene	WN breat olid VOI oltage x ci oil- gerato	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation ors.	uniforn in pure bosite c AND ers, van generati of swit	n and and cc lielectri digraff on of	Classes: non-uniform fields – Coror ommercial liquids, Maintenand cs- Applications of insulatin Classes: generator: generation of hig high AC voltages: cascade
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res	DIELECTRIC BR electric materials - G uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect single and multista onant transformer and	EAk Gased nduct sms F HI S tifier age d tesl pulse	KDO ous in s GH GH Marz la co geno HIG	WN breat olid VOI oltage x ci oil- gerato	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation ors.	uniforn in pure bosite c AND ers, van generati of swit	n and and cc lielectri digraff on of	Classes: non-uniform fields – Coror ommercial liquids, Maintenan- cs- Applications of insulatin Classes: generator: generation of hig high AC voltages: cascade surges – generation of impul
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res- currents - Trigger UNIT-IV	DIELECTRIC BR electric materials - Co uum breakdown – Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect : single and multista onant transformer and ring and control of imp MEASUREMENT AND HIGH CURF	EAK Gased nduct sms F HI S S tifiers age 1 tesl oulse OF REN	KDO ous iin s GH s, vc Marz la co gene HIG TS	WN brea and t olid VOI bltag x ci iil- g erato CH V	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation ors. /OLTAGE	uniforn in pure bosite c AND ers, van generati of swit CS	n and collicectri	Classes: non-uniform fields – Coror ommercial liquids, Maintenand cs- Applications of insulatin Classes: generator: generation of hig high AC voltages: cascado
UNIT-II Properties of Di discharges – Vact of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res- currents - Trigger UNIT-IV High Resistance	DIELECTRIC BR electric materials - G uum breakdown - Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect: single and multista onant transformer and ing and control of imp MEASUREMENT AND HIGH CURE with series ammeter	EAK Gased nduct sms F HI S tiffer age l tesl pulse OF REN r - l	KDO ous iin s GH s, vc Marz la co gene HIG FS	WN brea and t olid VOI bltag c ci il- g erato GH V	kdown in oreakdown and comp LTAGES e multiplie rcuits – g generation ors. /OLTAGE Resistanc	uniforn in pure posite c AND ers, van generati of swit CS e, Cap	n and collicectri	Classes: non-uniform fields – Coror ommercial liquids, Maintenand cs- Applications of insulatin Classes: generator: generation of hig high AC voltages: cascade surges – generation of impul Classes:
UNIT-II Properties of Di discharges – Vactor of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, rest currents - Trigger UNIT-IV High Resistance Voltmeter, Generation	DIELECTRIC BR electric materials - G uum breakdown - Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect: single and multista onant transformer and ing and control of imp MEASUREMENT AND HIGH CURE with series ammeter	EAK Gasee aduct sms F HI S tifiers age l tesl oulse OF REN T - l apace	GH GH GH S, VC Marz la co gene HIG TS Divid	WN brea and b olid VOI oltag x ci iil- g erato GH V ders, e Vo	kdown in oreakdown and comp LTAGES e multiplie reuits – g generation ors. /OLTAGE Resistanc oltage Tran	uniforn in pure posite c AND ers, van generati of swit CS e, Cap nsforme	n and and co lielectri digraff on of ching s acitanc ers, Ele	Classes: non-uniform fields – Coror ommercial liquids, Maintenan- cs- Applications of insulatin Classes: generator: generation of hig high AC voltages: cascade surges – generation of impul Classes: e and Mixed dividers - Per
UNIT-II Properties of Di discharges – Vactor of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, rest currents - Trigger UNIT-IV High Resistance Voltmeter, Generation	DIELECTRIC BR electric materials - Community uum breakdown - Community Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rectar single and multistat onant transformer and measurement MEASUREMENT AND HIGH CURF with series ammeter rating Voltmeters - C	EAK Gased aduct sms F HI S tiffers age 1 tesl oulse OF REN' r - 1 apac mniqu TES	KDO ous iion a in s GH S, vcc geno HIG TS Divic itanc ues ir	WN breat and t olid VOI bltag erato GH V ders, e Vo	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation ors. /OLTAGE Resistanc oltage Tran th voltage r	uniforn in pure posite c AND ers, van generati of swit CS e, Cap nsforme neasure	n and and co lielectri digraff on of ching s acitanc ers, Ele	Classes: non-uniform fields – Coro ommercial liquids, Maintenan cs- Applications of insulatin Classes: generator: generation of high high AC voltages: cascad surges – generation of impul Classes: e and Mixed dividers - Pe
UNIT-II Properties of Di discharges – Vactor of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, resecution of H impulse voltage: transformers, resecution UNIT-IV High Resistance Voltmeter, Genera Gaps - High currer UNIT-V	DIELECTRIC BR electric materials - Community uum breakdown - Community Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rectart single and multistation onant transformer and MEASUREMENT AND HIGH CURH with series ammeter rating Voltmeters - Community HIGH VOLTAGE COORDINATION	EAK Gased aduct sms F HI S tifiera age 1 tesl pulse OF REN T - 1 apact anniqu TES	KDO ous ion a in s GH s, vc gend HIG TS Divid itanc ues ir STIN	WN brea and t olid VOI bltag c ci: iil- g erato CH V ders, c e V ders, hig MG &	kdown in oreakdown and comp LTAGES e multiplie reuits – g generation ors. /OLTAGE Resistanc oltage Trans h voltage 1	uniforn in pure posite c AND ers, van generati of swit CS e, Cap nsforme neasure TION	n and and co lielectri digraff on of ching s acitanc ers, Ele ement.	Classes: non-uniform fields – Coro ommercial liquids, Maintenan cs- Applications of insulatin Classes: generator: generation of high high AC voltages: cascad surges – generation of impul Classes: e and Mixed dividers - Pe ctrostatic Voltmeters – Sphe
UNIT-II Properties of Di discharges – Vaci of oil Quality – materials. UNIT-III Generation of H impulse voltage: transformers, res- currents - Trigger UNIT-IV High Resistance Voltmeter, Gener Gaps - High currer UNIT-V High voltage tes	DIELECTRIC BR electric materials - Cor uum breakdown - Cor Breakdown mechani GENERATION O HIGH CURRENT igh DC voltage: Rect single and multista onant transformer and ing and control of imp MEASUREMENT AND HIGH CURH with series ammeter rating Voltmeters - C ent shunts- Digital tecl HIGH VOLTAGE COORDINATION sting of electrical po	EAK Gasee nduct sms F HI S tiffers age 1 tesl pulse OF REN T - 1 apac: miqu TES	KDO ous iion a iin s GH s, vcc Marz la co gene HIG TS Divic itanc itanc ies ir STIN appa	WN breat and t olid VOI bltag crato GH V ders, ee Vo hig VG &	kdown in oreakdown and comp LTAGES e multiplic rcuits – g generation ors. /OLTAGE Resistanc oltage Tran th voltage T k INSULA s as per 1	uniforn in pure posite c AND ers, van generati of swit CS e, Cap nsforme neasure TION	n and collicectri	Classes: non-uniform fields – Coro ommercial liquids, Maintenan cs- Applications of insulati Classes: generator: generation of hi high AC voltages: cascad surges – generation of impul Classes e and Mixed dividers - Pe ctrostatic Voltmeters – Sphe Classes

Text Books:

1. S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.

2. E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes Second Edition Elsevier, New Delhi, 2005.

3. C.L. Wadhwa, 'High voltage Engineering', New Age International Publishers, Third Edition, 2010.

Reference Books:

1. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.

2. Mazen Abdel – Salam, Hussein Anis, Ahdab A-Morshedy, Roshday Radwan, High Voltage Engineering – Theory & Practice, Second Edition Marcel Dekker, Inc., 2010.

3. Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013.

Course Outcome:

At the end of course the student is able to

- 1. understand various types of over voltages and to measure over voltages in power system.
- 2. Analyze the properties of Dielectric materials and its break down.
- 3. understand Generation, measurement and testing of high voltage.
- 4. Proficiently conduct measurements of high voltage and high current, demonstrating the ability to employ accurate techniques and instruments for precise analysis in electrical systems.
- 5. Develop expertise in high voltage testing and insulation coordination, ensuring effective tests and optimal insulation design for enhanced electrical system reliability.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2		1										
CO 2	3	2	1	1										
CO 3	3	3	2	2										
CO 4	3	3	2	2										
CO 5	3	3	2	2										
AVG	3	2.6	1.7	1.6										

ELECTRICAL POWER QUALITY

Course Code	Category	Но	ırs / W	eek	Credits	Maximum Marks			
20OE0205	OPEN	L	Т	Р	С	CIA	SEE	Tota 1	
	ELECTIVE	2	2	-	3	30	70	100	
Contact Classes: 48	Tutorial Classes	Tutorial Classes: 0			asses: 0	Total Classes: 48			
OBJECTIVES:									

The course should enable the students to:

V. Understand the terminology used to describe power quality.

VI. The sources of power quality disturbances and power transients that occur in power systems.

VII. The sources of harmonics, harmonic indices, Devices for controlling harmonic distortion.

VIII. The principle of operation of DVR and UPQC.

UNIT-I	INTRODUCTION	Classes:10
Introduction	of the power quality (PQ) problem, terms used in PQ: Voltage, sag, sy	well, surges,
harmonics, over	er voltages, spikes, voltage fluctuations, transients, interruption, overview of p	ower quality
phenomenon, 1	emedies to improve power quality, power quality monitoring.	
Classes:10	TRANSIENTS, SHORT DURATION AND LONG DURATION VARIATIONS	
Categories an	nd Characteristics of Electromagnetic Phenomena in Power Systems- Impul	sive and
Oscillatory 7	Fransients-Interruption - Sag-Swell-Sustained Interruption - Under Voltage	– Over
Voltage–Outa	age. Sources of Different Power Quality Disturbances.	
UNIT - III	FUNDAMENTALS OF HARMONICS & APPLIED HARMONICS	Classes:9
Harmonic Dis	tortion, Voltage Versus Current Distortion, Harmonics Versus Transients, Po	wer System
Quality Under	Non Sinusoidal Conditions, Harmonic Indices, Harmonic Sources from Commo	ercial Loads,
Harmonic Sou	rces from Industrial Loads. Applied Harmonics: Effects Of Harmonics, Harmon	ic Distortion
Evaluations, Pa	rinciples of Controlling Harmonics, Devices for Controlling Harmonic Distortion	n.
UNIT - IV	POWER QUALITY MONITORING	Classes:9
Power Qualit	y Benchmarking-Monitoring Considerations- Choosing Monitoring Locations	- Permanent
Power Qualit	y Monitoring Equipment-Historical Perspective of Power Quality Measuring	Instruments-
Power Qualit	y Measurement Equipment-Types of Instruments- Power Quality Monitoring Sta	andards.
UNIT - V	POWER QUALITY ENHANCEMENT USING CUSTOM POWER DEVICES	Classes:10
	to Custom Power Devices-Network Reconfiguring Type: Solid State Current I State Breaker (SSB) -Solid State Transfer Switch (SSTS) Compensatin	

Dynamic Voltage Restorer (DVR)-Unified Power Quality Conditioner (UPQC)-Principle of Operation Only.

Text Books:

3. 1. Electrical Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Surya Santoso,

4. 2. H.Wayne Beaty, Mc Graw Hill Education (India) Pvt. Ltd., 3rd Edition, 2012.
3. Power quality, C. Sankaran, CRC Press, 2001.

Reference Books:

1. Understanding Power quality problems – Voltage Sags and Interruptions, Math H. J. Bollen IEEE Press Series on Power Engineering, WILEY, 2007.

2. Power quality - VAR Compensation in Power Systems, R. Sastry Vedam, Mulukutla S.

Sarma, CRC Press, 2009, First Indian Reprint 2013.

3. Fundamentals of Electric Power Quality, Surya Santoso, Create Space, 2012.

Course Outcome:

At the end of the course, a student will be able to:

CO1: To study various methods of power quality monitoring.

CO2: To Study the production of voltages sags.

CO3: To Study the interruptions types and its influence in various components.

CO4: To Study the Effects of harmonics on various equipment's.

CO5: Understand power quality monitoring and classification techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2								1		
CO2	3	2	2	1								1		
CO3	3	3	1	2								1		
CO4	3	2	1	1								1		
CO5	3	1	2	3								1		
AVG	3	2	1.4	1.8								1		

ELECTRICAL TRANSMISSION SYSTEMS

Course Code	Category	Hou	irs / W	eek	Credit s	Maximum Marks			
20OE020	OPEN	L	Т	Р	С	CI A	SEE	Tota l	
0	ELECTIVE	3	0	0	3	40	60	100	
Contact Classes:	Tutorial Class	es:	Prac	ctical	Classes:	Total Classes:			

OBJECTIVES:

The objectives of the course are to make the student learn about

- Classification of transmission lines and representation by suitable equivalent circuits
- The calculation of performance of transmission lines.
- The analysis of mechanical design, sag of transmission line.
- The underground cables its comparison with overhead lines and substations.

UNIT-I TRANSMISSION LINE PARAMETERS

Classes:1

Inductance & Capacitance Calculations of Transmission Lines: Line conductors, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and effect of earth on capacitance. Numerical Problems.

UNIT -	MODELLING	AND	PERFORMANCE	OF	Classes:1
П	TRANSMISSION	LINES			0

Classification of transmission lines: Short, medium and long line and their model representations, nominal T, nominal π and A, B, C, D constants for symmetrical and asymmetrical networks, numerical problems, mathematical solutions to estimate regulation and efficiency of all types of lines, numerical problems; Long transmission line: Rigorous solution, evaluation of A, B, C, D constants, numerical problems, Ferranti effect, surge impedance and surge impedance loading of long lines. Incident, reflected and refracted waves, wave length and velocity of propagation of waves.

UNIT - III	MECHANICAL I	DESIGN	OF TRAN	SMISS	ION LINES	5	Classes 0	s:1
Overhead	Line Insulators: T	ypes of	Insulators,	String	Efficiency	and	Methods	for
Improvem	ent, Capacitance Gra	ading and	Static Shie	lding.				

Corona: Corona Phenomenon, Factors Affecting Corona, Critical Voltages and Power Loss, Radio Interference.

Classes:0 UNIT - IV **UNDER GROUND CABLES** 9

Introduction, insulation, insulating materials, Extra high voltage cables, grading of cables, insulation resistance of a cable, Capacitance of a single core and three core cables, Overhead lines versus underground cables, types of cables.

UNIT - V **SAG AND SUBSTATIONS**

Classes:0

9

Sag and tension calculations: Sag and tension calculations with equal and unequal heights of towers, effect of wind and ice on weight of conductor, numerical problems, stringing chart and sag template and its applications.

Substation: Classification of substations, substation equipments, bus bar arrangement and bus-bar schemes.

Text Books:

1. Electrical power systems, C.L.Wadhwa, New Age International (P) Limited, 6th Edition, 2010, Reprint 2014.

2. A Text Book on Power System Engineering, M.L.Soni, J.B.Gupta, U.S.Bhatnagar and A.Chakrabarti, Dhanpat Rai & Co. Pvt. Ltd., 1999.

3. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications, 2011.

4. Switchgear and Protection, Sunil S Rao, Khanna Publishers, 1992.

Reference Books:

1. Power system Analysis 4th edition, John J Grainger and William D Stevenson, JR, Mc Graw Hill Education, 2003, Reprint 2015.

2. Power System Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 2nd Edition, 2008, 23rd Reprint 2015.

3. Electric Power Transmission System Engineering: Analysis and Design, TuranGonen, 2nd Edition, CRC Press, Taylor & Francis group, 2009, 1st Indian Reprint 2010

4. Transmission network Protection, Y.G. Paithankar, Taylor and Francis, 2009.

5. Power system protection and switch gear, BhuvaneshOza, TMH, 2010.

Course Outcome:

At the end of the course, a student will be able to:

CO1: analyze and model transmission line and can determine the performance of line.

CO2: Analyze Classification of transmission lines and loading effect in transmission lines.

CO3: analyze the mechanical design of transmission line and grounding.

CO4: analyze the grading of underground cables and comparison with overhead lines.

(COs)	PO1	PO2	PO3	PO4	РО 5	PO6	PO7	РО 8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	3	1	1										
CO2	3	2	2	1										
CO3	3	2	2	2										
CO4	3	3	3	2										
CO5	3	2	1	2										
AV G	3	2. 4	1.8	1.6										

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org INTRODUCTION TO ELECTRICAL DRIVES

Course Code	Category	rs / W	eek	Credits	Maximum Marks				
20OE0207	OPEN ELECTIV	L	Т	Р	С	CIA	SEE	Tota l	
	Ε	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Class	es: 0	Pra		Classes:	Total Classes: 48			

OBJECTIVES:

At the end of this course, students will demonstrate the ability to

- 1. Understand the characteristics of dc motors and induction motors.
- 2. Understand the principles of speed-control of dc motors and induction motors.
- 3. Understand the power electronic converters used for dc motor and induction motor speed control.

UNIT-I	CONVERTER FED DC MOTORS	Classes: 10
Classification	of Floatria Drives Pasia alements of Floatria Drive Dynamia	Control of a

Classification of Electric Drives, Basic elements of Electric Drive, Dynamic Control of a Drive system, Stability analysis, Introduction to Thyristor Controlled Drives, Single Phase, Three Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited and D.C Series Motors – Continuous Current Operation – Output Voltage and Current Waveforms – Speed and Torque Expressions – Speed – Torque Characteristics-Problems.

UNIT - II	FOUR QUADRANT OPERATION OF DC DRIVES	Classes: 10
	I den generation of bland be	

Introduction to Four Quadrant Operation – Motoring Operations, Electric Braking – Plugging, Dynamic and Regenerative Braking Operations. Four Quadrant Operation of D.C Motors by Dual Converters – Closed Loop Operation of DC Motor (Block Diagram Only)

UNIT - III	CHOPPER FED DC MOTORS	Classes: 10								
Single Quadrant, Two Quadrant and Four Quadrant Chopper Fed DC Separately Excited										
Excited Motors – Continuous Current Operation – Output Voltage and Current Wave										
Forms – Spe	ed Torque Expressions - Speed Torque Characteristics - I	Problems on								
Chopper Fed D.C Motors										
UNIT - IV	CONTROL OF INDUCTION MOTOR	Classes: 09								

Induction Mo	otor Stator Voltage Control and Characteristics. AC Voltage C	ontrollers –
Waveforms	- Speed Torque Characteristics - Stator Frequency Co	ontrol and

Characteristics. Voltage Source and Current Source Inverter - PWM Control – Comparison of VSI and CSI Operations – Speed Torque Characteristics – Numerical Problems on Induction Motor Drives – Closed Loop Operation of Induction Motor Drives (Block Diagram Only).

UNIT - V	CONTROL OF SYNCHRONOUS MOTORS

Classes: 09

Separate Control & Self Control of Synchronous Motors – Operation of Self Controlled Synchronous Motors by VSI and CSI Cycloconverters. Load Commutated CSI Fed Synchronous Motor – Operation – Waveforms – Speed Torque Characteristics – Applications – Advantages and Numerical Problems – Closed Loop Control Operation of Synchronous Motor Drives (Block Diagram Only).

Text Books:

1. Power semiconductor controlled drives, G K Dubey, Prentice Hall, 1995.

2. Modern Power Electronics and AC Drives, B.K.Bose, PHI, 2002.

Reference Books:

1. Power Electronics, MD Singh and K B Khanchandani, Tata McGraw-Hill Publishing company, 2008.

2. Power Electronic Circuits, Devices and applications, M.H.Rashid, PHI, 2005.

3. Electric drives Concepts and Applications, Vedam Subramanyam, Tata McGraw Hill Publications, 2nd Edition, 2011.

Course Outcomes:

The student should be able to:

- Identify the choice of the electric drive system based on their applications
- Explain the operation of single and multi quadrant electric drives
- Analyze single phase and three phase rectifiers fed DC motors as well as chopper fed DC motors
- Explain the speed control methods for AC-AC & DC-AC converters fed to Induction motors and
- Understand Synchronous motors with closed loop, and open loop operations

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	3	2										
CO 2	3	1	1	2										
CO 3	3	2	2	2										
CO4	3	2	3	2										

CO5	3	1	1	2					
AVG	3	1.6	2	2					

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY

AUTONOMOUS-

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org DISTRIBUTED SYSTEMS

Course Code	Category	Ho	urs / W	eek	Credits	Maximum Marks			
20OE0208	OPEN ELECTI	L	L T P		С	CI A	SE E	Total	
	VE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Classes:00	Pra	Practical Classes: 00 Total					ses: 48	

OBJECTIVES:

The course should enable the students to:

To study different factors of Distribution system.

- To study and design the substations and distribution systems.
- To study the concepts of voltage drop and power loss.
- To study the distribution system protection and its coordination.
- To study the effect of compensation for power factor improvement.
- To study the effect of voltage control on distribution system.

UNIT-I	GENERAL CONCEPTS	Classes:10						
Introduction to d	istribution systems – Distribution system losses – C	Coincidence factor						
–Contribution fa	-Contribution factor loss factor - Numerical Problems - Load Modelling and							
Characteristics - Relationship between the load factor and loss factor - Classification								
and characteristic	and characteristics of loads (Residential, commercial, Agricultural and Industrial).							
UNIT - II	SUBSTATIONS	Classes:10						
Location of sub	stations: Rating of distribution substation - Serv	ice area with 'n'						
primary feeders – Benefits and methods of optimal location of substations.								
primary feeders -	- Benefits and methods of optimal location of substa	ations						
primary feeders - Distribution Fe		ations						
Distribution Fee								

Design Considerations of distribution feeders: Radial and loop types of primary feeders – Voltage levels – Feeder loading – Basic design practice of the secondary distribution system.

UNIT - III	SYSTEM ANALYSIS	Classes:09
Voltage drop and	l power-loss calculations: Derivation for v	oltage drop and power loss
in lines – Uni	formly distributed loads and non-unifo	ormly distributed loads -
Numerical proble	ems – Three phase balanced primary lines.	

PROTECTION, COORDINATION &	Classes:10
AUTOMATION	Classes.10

Objectives of distribution system protection –Time current characteristics – Protective devices: Principle of operation of fuses – Circuit Reclosures – Line sectionalizes and circuit breakers, Modulated case circuit breakers, Earth leakage circuit breakers – Protection schemes of parallel & Ring main feeders.

Coordination of protective devices: General coordination procedure –Various types of co-ordinated operation of protective devices – Residual Current Circuit Breaker Automation: Block diagram approach of SCADA.

UNIT - V	COMPENSATION FOR POWER FACTOR	Classes:10
UNII - V	IMPROVEMENT	Classes:10
~ · ·		0

Capacitive compensation for power factor control – Different types of power capacitors – shunt and series capacitors – Effect of shunt capacitors (Fixed and switched) – Power factor correction – Capacitor allocation – Economic justification – Procedure to determine the best capacitor location – Numerical problems. Voltage Control

Voltage Control: Equipment for voltage control – Effect of series capacitors – Effect of AVB/AVR – Line drop compensation – Numerical problems.

Text Books:

1. "Electric Power Distribution system, Engineering" – by Turan Gonen, McGraw-hill Book Company.

Reference Books:

1. Electrical Distribution Systems by Dale R.Patrick and Stephen W.Fardo,

CRC press

2. Electric Power Distribution – by A.S. Pabla, Tata McGraw–hill Publishing company, 4th edition, 1997.

3. Electrical Power Distribution Systems by V.Kamaraju, Right Publishers.

Course Outcome:

At the end of the course, a student will be able to:

1.Understand various factors of distribution system, design the substation and feeders.

2.Determine the voltage drop and power loss.

3.Understand the protection and its coordination.

4. understand the effect of compensation for p.f improvement and the effect of voltage control.

5.Understand the effect of compensation for p.f improvement and analysing the effect of voltage control

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	РО 9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	3	3	3	2								1		
CO2	3	3	2	2								1		
CO3	3	3	1	1								1		
CO4	3	2	2	1								1		
CO5	3	2	2	1								1		
AV G	3	2.8	2. 4	1.4								1		

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

UTILIZATION AND TRACTION SYSTEMS

Course Code	Category	Но	irs / W	Veek	Credit s		Maximum Marks		
20OE0209	OPEN ELECTIV	L	Т	Р	С	CI A	SEE	Tota l	
	E	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Classe	s: Nil	Pra	ctical (Nil	Classes:	ses: Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

• To analyze the various concepts behind renewable energy resources.

- To introduce the energy saving concept by different ways of illumination.
- To understand the different methods of electric heating and electric welding.
- To introduce knowledge on Solar Radiation and Solar Energy Collectors.
- To introduce concepts of Wind Energy and its utilization.

UNIT-I ILLUMINATION

Classes:1

Introduction - definition and meaning of terms used in illumination engineering, law of illumination - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps – design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.

	HEATING AND WELDING	Classes:1
UNIT-II	HEATING AND WELDING	0

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types - resistance welding - arc welding - power supply for arc welding - radiation welding, equipment used for arc welding.

UNIT-III	ELECTRIC TRACTION – I	Classes:0
	ELECTRIC TRACTION - I	9

Introduction – Systems of Electric Traction. Comparison Between A.C and D.C Traction – Special Features of Traction Motors - The Locomotive – Wheel arrangement and Riding Qualities – Transmission of Drive – Characteristics and Control of Locomotives and Motor Coaches for Track Electrification – DC Equipment – AC Equipment – Electric Braking with DC Motors and with AC Motors.

UNIT-IV	ELECTRIC TRACTION – II	Classes:1
Mechanics of	of Train Movement. Speed-Time Curves of Different Services –	ů.
	ateral, Speed-Time Curves – Numerical Problems. Calculations	-
	er, and Specific Energy Consumption - Effect of Varying Accel	
Braking Ret	ardation, Adhesive Weight and Coefficient of Adhesion –Problem	ıs.
UNIT-V	INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES	Classes:0 9
Configuratio	on and performance of electrical vehicles, traction motor cha	racteristics,
-	rt, transmission requirement, vehicle performance and energy con	
Text Books		-
1. N.V. Sur	yanarayana, "Utilisation of Electric Power", Wiley Eastern Lin	mited, New
Age		,
U	1 Limited, 1993.	
2. J.B.Gupta	a, "Utilisation Electric power and Electric Traction", S.K.Katari	a and Sons,
2000.		
3. G.D.Rai,	"Non-Conventional Energy Sources", Khanna Publications Ltd.,	New Delhi,
1997.		
Reference I	Books:	
2. H.Partab, New	ut, Utilisation of Electric Power, Laxmi publications Private Limi Art and Science of Utilisation of Electrical Energy", Dhanpat F	
Delhi, 2004.		
	hwa, "Generation, Distribution and Utilisation of Electrical En	ergy", New
Age	1 Pvt.Ltd., 2003.	
	agaraju, M. Balasubba Reddy, D. Srilatha,' Generation and U	tilization of
Electrical	agaraju, W. Dalasubba Reddy, D. Sinama, Generation and O	
	arson Education, 2010.	
	L. Steeby,' Alternative Energy Sources and Systems', Cengag	e Learning,
2012.		-
Course Out	tcomes:	
At the end o	f the course a student will be able to:	
1. Illus	trate working principle electric power utilization and their applica	tion in real
life		
	ose proper traction systems depending upon application considerion omic and technology up-gradation.	ng
	bloy mathematical and graphical analysis considering different pra	actical
-	es to design of traction system; analyze the performance parameter	

traction system.

- 4. Examine various applications in indoor and outdoor application areas where use of light sources are essential.
- 5. Classify types of electric light sources based on nature of operation and their objectives, performance and reliability.

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3	2										
CO 2	3	3	2	2										
CO 3	3	2	1	3										
CO4	3	2	2	2										
CO5	3	1	1	2										
AVG	3	2.2	1.8	2.2										

OLLEGE OF ENGINEERING & TECHNOLOGY | AUTONOMOUS | ACCREDITED BY NAAC |

RI VENKATESA PERUMAL

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

Course Code	Category Hou		irs / V	Veek	Credit		Maximum	
Course Coue			1137 V	veen	S	Marks		ks
	OPEN	L	т	Р	С	CI	SEE	Tota
20OE0210	ELECTIV		I			Α	SEE	1
	E	3	0	0	3	40	60	100
Contact Classes: 48	Tutorial Classes	Practical (Tota	l Class	es: 48

OBJECTIVES:

The course should enable the students to:

- The different types of electromagnetic relays and microprocessor-based relays
- The protection of Generators, Transformers and feeders.
- The technical aspects involved in the operation of circuit breakers
- The generation of over voltages and its mitigation,

UNIT - I PROTECTIVE RELAYS

Classes:1

Electromagnetic relays – Basic requirements of relays – Primary and backup protection – Construction details of – Attracted armature, Balanced beam, Inductor type and differential relays – Universal torque equation – Characteristics of over current, Direction and distance relays, Static relays – Advantages and disadvantages – Definite time, Inverse and IDMT static relays – Comparators – Amplitude and phase comparators. Microprocessor based relays – Advantages and disadvantages – Block diagram for over current (Definite, Inverse and IDMT) and Distance relays and their flowcharts.

UNIT -II PROTECTION OF GENERATORS, TRANSFORMERS

Classes:1

Protection of generators against stator faults, Rotor faults and abnormal conditions. Restricted earth fault and inter-turn fault protection. Numerical problems on percentage winding unprotected. Protection of transformers: Percentage differential protection, Numerical problem on design of CT ratio, Buchholz relay protection, Numerical Problems.

UNIT - III	PROTECTION OF FEEDERS AND LINES

Classes:0

Protection of feeder (Radial and ring main) using over current relays. Protection of transmission line -3 zone protection using distance relays. Carrier current protection. Protection of bus bars.

UNIT - IV	CIRCUIT BREAKERS									
		0								
Elementary p	principles of arc interruption, Recovery, Restriking voltage an	nd recovery								
voltage – Re	striking phenomenon, Average and max. RRRV, Numerical	problems –								
Current chop	ping and resistance switching - CB ratings and specifications	: Types and								
numerical problems – Auto reclosures, Description and operation of following types of										
circuit breakers: Minimum oil circuit breakers, Air blast circuit breakers, Vacuum and										
SF6 circuit breakers.										
	UNIT - V OVER VOLTAGES IN POWER SYSTEMS									
$\left \begin{array}{c} \mathbf{UNII} - \mathbf{V} \\ \end{array} \right ^{2}$	UNIT - V OVER VOLTAGES IN POWER SYSTEMS									
Generation c	f over voltages in power systems – Protection against light	ntning over								
voltages – V	alve type and Zinc-Oxide lightning arresters - Insulation coc	ordination –								
BIL.										
Text Books:										
1. Powe	r System Protection and Switchgear Badri Ram, D.N. Vishwak	arma								
McGı	aw Hill 2nd Edition									
2. Powe	r System Protection and Switchgear BhuvaneshOza et al McGr	aw Hill 1st								
Editic	on, 2010									
Reference B	ooks:									
1. Protec	ction and Switchgear Bhavesh et al Oxford 1 st Edition, 2011									
2. Power	r System Switchgear and Protection N. Veerappan S.R. Krishn	amurthy S.								
Chane	1 1 st Edition, 2009									

3. Fundamentals of Power System Protection Y.G.Paithankar S.R. Bhide PHI 1 st Edition, 2009

Course Outcomes:

At the end of the course the student will be able to:

- Discuss performance of protective relays, components of protection scheme and relay terminology over current protection, distance relays, of differential relays etc
- Discuss protection of generators, motors, Transformer and Bus Zone Protection.
- Explain the principle of circuit interruption in different types of circuit breakers.
- Discuss protection against Over voltages
- Understand Protection against lightning over voltages

	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	1	2	1								1		

CO 2	3	3	3	2				1	
CO 3	3	1	2	2				1	
CO4	3	1	2	2					
CO5	3	2	1					1	
AVG	3	1.6	2	1.4				0.8	

POWER SYSTEM ANALYSIS AND OPERATION

Course Code	Category	Hours / Week			Credits	Maximum Marks			
20OE021 1	OPEN	L	Τ	Р	С	CIA	SEE	Total	
	ELECTI VE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Clas 0	ses:	Pra	ctical	Classes: 0	Total Classes: 48			

OBJECTIVES:

The course should enable the students to:

1. Illustrate the formation of [Z] bus of a power system network.

2. Compute power flow studies by various numerical methods.

3. Discuss the symmetrical component theory, sequence networks and short circuit calculations.

4. Analyze power system for steady state stability

5. Analyze power system for Transient stability and suggest methods to improve.

UNIT - I	POWER SYSTEM NETWORK MATRICES	Classes: 10
----------	-------------------------------	-------------

Graph Theory: Fundamental Concepts and Definition, Development of bus incidence matrices.

Network Matrices: Formation of Y bus by singular transformation and direct inspection methods, numerical problems; Formation of Z Bus: Partial network, algorithm for the modification of Z bus matrix for addition of element from a new bus to reference bus, addition of element from a new bus to an old bus, addition of element between an old bus to reference bus and addition of element between two old busses (Derivations and Numerical Problems).

UNIT - II	POWER FLOW STUDIES AND LOAD	Classes: 10				
	FLOWS	Classes: 10				

Load flows studies: Necessity of power flow studies, data for power flow studies,

derivation of static load flow equations; Load flow solutions using Gauss Seidel method: Acceleration factor, load flow solution with and without PV buses, algorithm and flowchart; Numerical load flow solution for simple power systems (Max. 3 buses): Determination of bus voltages, injected active and reactive powers (Sample one iteration only) and finding line flows / losses for the given bus voltages; Newton Raphson method in polar coordinates form: Load flow solution with or without PV busses derivation of Jacobian elements, algorithm and flowchart, decoupled and fast decoupled methods.

UNIT - III	SHORT CIRCUIT ANALYSIS PER UNIT	Classes: 10
	SYSTEM OF REPRESENTATION	Classes: 10
D •/		

Per unit system: Equivalent reactance network of a three-phase power system, numerical problems; Symmetrical fault analysis: short circuit current and MVA calculations, fault levels, application of series reactors, numerical problems; Symmetrical component theory: Symmetrical component transformation, positive, negative and zero sequence components, voltages, currents and impedances.

Sequence networks: Positive, negative and zero sequence networks, numerical problems; Unsymmetrical fault analysis: LG, LL, LLG faults with and without fault impedance, numerical problems.

UNIT - IV	STEADY STATE STABILITY ANALYSIS	Classes: 9
-----------	---------------------------------	------------

Steady state stability: Elementary concepts of steady state, dynamic and transient stabilities, description of steady state stability power limit, transfer reactance, synchronizing power coefficient, power angle curve and determination of steady state stability and methods to improve steady state stability.

UNIT - V	TRANSIENT STATE STABILITY	Classes 0								
	ANALYSIS	Classes: 9								
Swing equati	Swing equation: Derivation of swing equation, determination of transient stability by									

equal area criterion, application of equal area criterion, critical clearing angle calculation, solution of swing equation, point by point method, methods to improve stability, application of auto reclosing and fast operating circuit breakers.

Text Books:

- 1. I J Nagrath& D P Kothari, "Modern Power system Analysis", Tata McGraw-Hill Publishing Company, 2nd Edition.
- 2. C L Wadhwa, "Electrical Power Systems", Newage International, 3rd Edition.
- 3. M A Pai,"Computer Techniques in Power System Analysis", TMH Publications.
- 4. N..Ramana "Power System Analysis", Pearson Education India.

Reference Books:

- 1. K Umarao, "Computer techniques and models in power systems", I K International Pvt. Ltd.
- 2. HadiSaadat, "Power System Analysis", 2nd Edition, TMH. Edition, 2003.

- 3. Grainger and Stevenson, "Power System Analysis", Tata McGraw Hill.
- 4. J Duncan Glover and M S Sarma., THOMPSON, "Power System Analysis and Design", 3rd Edition.
- 5. Abhijit Chakrabarthi and SunitaHaldar, "Power system Analysis Operation and control", 3rd Edition, PHI, 2010.

Web References:

- 1. https://www.worldcat.org/title/computer-methods-in-power-systemanalysis/.../600788826
- https://www.sjbit.edu.in/.../COMPUTER%20%20TECHNIQUES%20IN %20POWER%20%20SYS..
- 3. https://www.books.google.com > Technology & Engineering > Electrical
- 4. https://www.nptel.ac.in/courses/108105067/
- 5. https://www.jntusyllabus.blogspot.com/2012/01/computer-methods-power-systems-syllabus.html

E-Text Books:

- 1. https://www.scribd.com/.../Computer-Methods-in-Power-System-Analysis-by-G-W-St...
- https://www.academia.edu/8352160/
 Computer Methods and Power System Analysis Stagg
- 3. https://www.uploady.com/#!/download/ddC9obmVTiv/NwO1AnQrImogeJjS
- 4. https://www.materialdownload.in/article/Computer-Methods-in-Power-System-Analysis_159/
- 5. https://www.ee.iitm.ac.in/2015/07/ee5253/

Course Outcome:

At the end of the course, a student will be able to:

- 1. Find [Z] bus and [Y] bus of a power system network
- 2. Analyze load flow studies(different algorithms, flow charts)
- 3. Analyze the symmetrical and unsymmetrical components, sequence networks, unsymmetrical fault analysis
- 4. Analyze steady state stability of power system
- 5. Analyze transient stability of power system

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	2	1							1		
CO 2	3	3	3	3	2							1		
CO 3	3	3	2	3								1		

CO 4	3	3	2	3				1	
CO 5	3	3	2	3				1	

SRI VENKATESA PERUMAL COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS | ACCREDITED BY NAAC

RVS Nagar, K.N Road, Puttur, Chittoor dist, AP. | www.svpcet.org

NETWORK ANALYSIS AND SYNTHESIS

Course Code	Category	Hours / Week			Credits	Maximum Marks			
20OE021	OPEN	L	Т	Р	С	CIA	SEE	Total	
2	ELECTI VE	3	0	0	3	40	60	100	
Contact Classes: 48	Tutorial Class 0	Practical Classes: 0			Total Classes: 48				

OBJECTIVES:

The course should enable the students to:

- 1. To learn the concepts of network analysis in electrical and electronics engineering.
- 2. To learn linear circuit analysis, graph theory and network theorems.
- 3. Analyze two port networks using Z, Y, ABCD and h parameters

UNIT - I	NETWORK TOPOLOGY	Classes: 10					
Linear Oriented Graphs -incidence matrix of a linear oriented graph -Kirchoff's Laws in							
incidence matr	ix formulation -nodal analysis of networks (independent	ndent and dependent					
incluence man	ix ionimulation –nodal analysis of networks (indepen	1					

sources) – Circuit matrix of linear oriented graph –Kirchoff's laws in fundamental circuit matrix formulation.

UNIT - II **GRAPH THEORY** Classes: 10 Loop analysis of electric networks (with independent and dependent sources) - Planar graphs -Mesh analysis- Duality -Cut set matrix -Fundamental cut set matrix -Relation between circuit, cut set and incidence matrices -Kirchoff's laws in fundamental cut-set formulation -Node-pair analysis - Analysis using generalized branch model (node, loop

and node pair analysis) -Tellegen's theorem. UNIT - III **NETWORK FUNCTIONS** Classes: 10 Review of Network functions for one port and two port networks: - pole zero location for driving point and transfer functions-Impulse response of Network functions from pole-zero plots- Sinusoidal steady-state frequency response from pole-zero plots. Hurwitz polynomials -properties - Positive real functions -Properties of positive real functions - passivity-necessary and sufficient conditions for positive real functionsphysical realizability.

UNIT - IV	TWO PORT NETWORKS	Classes: 9						
Characterization of LTI two port networks ZY, ABCD and h parameters, reciprocity an								
symmetry. In	ter-relationships between the parameters, inter-conr	nections of two por						
networks, T &	П Representation.							

UNIT - V	NETWORK SYNTHESIS & FILTERS	Classes: 9						
Positive real function; definition and properties; properties of LC, RC and RL driving								
point functions, synthesis of LC, RC and RL driving point immittance functions using								
Foster and C	auer first and second forms. Image parameters	and characteristics						
impedance, pa	ssive and active filter fundamentals, low pass, high pa	ss, (constant K type)						
filters, and intr	oduction to active filters.							
Text Books:								
1. K. S. Suresh	Kumar, -Electric Circuit Analysisl, Pearson Publica	ntions, 2013.						
2. Ravish R. St	ngh, "Network Analysis and Synthesis", McGraw-Hil	l Education, 2013						
3.E. Van Valk	enburg, "Network Analysis", Prentice Hall of India							
4.A C.L Wadh	wa, "Network Analysis and Synthesis" New Age Inte	rnational Publishers,						
2007,								
5.Roy Choudh	ary, "Networks and Systems" Wiley Eastern Ltd.							
Reference Bo	oks:							
1.Franklin Kuo	, —Network Analysis and Synthesisl, 2nd Ed., Wiley	India.						
	burg M.E., —Introduction to Modern Network Synth							
1960 (reprint 1		• •						
× 1	burg M.E, —Network Analysis, Prentice Hall India, 2	2014.						
	kenburg, "An Introduction to Modern Network Syntl							
Ltd.		· · ·						
5. Chakrabarti.	"Circuit Theory" Dhanpat Rai & Co							
Course Outco								
On completion	of this course, the students will be able to							
	ly network topology concepts in the formulation and	d solution of electric						
	k problems.							
	ly two-port network analysis in the design and an	nalysis of filter and						
	tor networks.	tions and varify the						
	tify the properties and characteristics of network func- natical constraints for their physical realization.	tions, and verify the						
	hesize an electric network using driving point function	18						
•	gn active and passive filter circuits							

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	3								1		
CO 2	3	3	2	2								1		
CO 3	3	3	2	1								1		
CO 4	3	3	3	3								1		
CO 4	3	2	1	1								1		
AVG	3	2.6	1.8	2								1		